stem/AI/Classification/Classification.md
andy 1c441487f9 vault backup: 2023-06-02 17:17:29
Affected files:
.obsidian/workspace-mobile.json
.obsidian/workspace.json
Lab/Scratch Domain.md
Money/Econ.md
STEM/AI/Classification/Classification.md
STEM/AI/Classification/README.md
STEM/AI/Classification/Supervised.md
STEM/AI/Neural Networks/CNN/Examples.md
STEM/AI/Neural Networks/CNN/FCN/FCN.md
STEM/AI/Neural Networks/CNN/FCN/FlowNet.md
STEM/AI/Neural Networks/CV/Filters.md
STEM/img/coordinate-change.png
STEM/img/gaussian-class.png
Tattoo/Engineering.md
Want.md
2023-06-02 17:17:29 +01:00

973 B

Given an observation, determine one class from a set of classes that best explains the observation

Features are discrete or continuous

  • 2 category classifier
    • Dichotomiser

Argmax

Argument that gives the maximum value from a target function

Gaussian Classifier

Training

  • Each class $i$ has it's own Gaussian N_i=N(m_i,v_i)
\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)
\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)
  • With equal priors

Discrete Classifier

  • Each class i has it's own histogram H_i
    • Describes the probability of each observation type k
    • P(o_t=k|H_i), based on class-specific type counts
\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)
  • Nothing else known about classes
\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)
  • Given class priors P(H_i)
  • Maximum posterior probability
    • Bayes