vault backup: 2023-06-02 17:17:29

Affected files:
.obsidian/workspace-mobile.json
.obsidian/workspace.json
Lab/Scratch Domain.md
Money/Econ.md
STEM/AI/Classification/Classification.md
STEM/AI/Classification/README.md
STEM/AI/Classification/Supervised.md
STEM/AI/Neural Networks/CNN/Examples.md
STEM/AI/Neural Networks/CNN/FCN/FCN.md
STEM/AI/Neural Networks/CNN/FCN/FlowNet.md
STEM/AI/Neural Networks/CV/Filters.md
STEM/img/coordinate-change.png
STEM/img/gaussian-class.png
Tattoo/Engineering.md
Want.md
This commit is contained in:
andy 2023-06-02 17:17:29 +01:00
parent b30da1d29c
commit 1c441487f9
9 changed files with 49 additions and 9 deletions

View File

@ -0,0 +1,34 @@
*Given an observation, determine one class from a set of classes that best explains the observation*
***Features are discrete or continuous***
- 2 category classifier
- Dichotomiser
# Argmax
Argument that gives the maximum value from a target function
# Gaussian Classifier
[Training](Supervised.md)
- Each class $i$ has it's own Gaussian $N_i=N(m_i,v_i)$
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)$$
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)$$
- With equal priors
![](../../img/gaussian-class.png)
# Discrete Classifier
- Each class $i$ has it's own histogram $H_i$
- Describes the probability of each observation type $k$
- $P(o_t=k|H_i)$, based on class-specific type counts
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)$$
- Nothing else known about classes
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)$$
- Given class priors $P(H_i)$
- Maximum posterior probability
- Bayes
![](../../img/coordinate-change.png)

1
AI/Classification/README.md Symbolic link
View File

@ -0,0 +1 @@
Classification.md

View File

@ -0,0 +1,5 @@
# Gaussian Classifier
- With $T$ labelled data
$$q_t(i)=$$

View File

@ -33,7 +33,7 @@
![googlenet](../../../img/googlenet.png)
## [[Inception Layer]]
## [Inception Layer](Inception%20Layer.md)
![googlenet-inception](../../../img/googlenet-inception.png)
## Auxiliary [[Deep Learning#Loss Function|Loss]] Functions
- Two other SoftMax blocks

View File

@ -3,7 +3,7 @@ Fully [[Convolution]]al Network
[[Convolutional Layer|Convolutional]] and [[UpConv|up-convolutional layers]] with [[Activation Functions#ReLu|ReLu]] but no others (pooling)
- All some sort of Encoder-Decoder
Contractive → [[UpConv]]
Contractive → [UpConv](../UpConv.md)
# Image Segmentation
- For visual output
@ -29,7 +29,7 @@ Contractive → [[UpConv]]
- Can use summed per-pixel log [[Deep Learning#Loss Function|loss]]
# Evaluation
![[fcn-eval.png]]
![fcn-eval](../../../../img/fcn-eval.png)
- SDS
- Classical method
- 52% mAP

View File

@ -3,9 +3,9 @@ Optical Flow
- 2-Channel optical flow
- $dx,dy$
- Two consecutive frames
- 6-channel [[tensor]]
- 6-channel [tensor](../../../../Maths/Tensor.md)
![[flownet.png]]
![flownet](../../../../img/flownet.png)
# [[Skip Connections]]
- Further through the network information is condensed
@ -14,13 +14,13 @@ Optical Flow
- Append activation maps from encoder to decoder
# Encode
![[flownet-encode.png]]
![flownet-encode](../../../../img/flownet-encode.png)
# [[Upconv]]
![[flownet-upconv.png]]
![flownet-upconv](../../../../img/flownet-upconv.png)
# Training
- Synthetic rendered objects
- Real background images
![[flownet-training.png]]
![flownet-training](../../../../img/flownet-training.png)

View File

@ -1,2 +1,2 @@
# Gabor
![[gabor.png]]
![gabor](../../../img/gabor.png)

BIN
img/coordinate-change.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

BIN
img/gaussian-class.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB