andy
1c441487f9
Affected files: .obsidian/workspace-mobile.json .obsidian/workspace.json Lab/Scratch Domain.md Money/Econ.md STEM/AI/Classification/Classification.md STEM/AI/Classification/README.md STEM/AI/Classification/Supervised.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/FCN/FCN.md STEM/AI/Neural Networks/CNN/FCN/FlowNet.md STEM/AI/Neural Networks/CV/Filters.md STEM/img/coordinate-change.png STEM/img/gaussian-class.png Tattoo/Engineering.md Want.md |
||
---|---|---|
.. | ||
Classification.md | ||
README.md | ||
Supervised.md |
Given an observation, determine one class from a set of classes that best explains the observation
Features are discrete or continuous
- 2 category classifier
- Dichotomiser
Argmax
Argument that gives the maximum value from a target function
Gaussian Classifier
- Each class $i$ has it's own Gaussian
N_i=N(m_i,v_i)
\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)
\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)
- With equal priors
Discrete Classifier
- Each class
i
has it's own histogramH_i
- Describes the probability of each observation type
k
P(o_t=k|H_i)
, based on class-specific type counts
- Describes the probability of each observation type
\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)
- Nothing else known about classes
\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)
- Given class priors
P(H_i)
- Maximum posterior probability
- Bayes