stem/AI/Neural Networks/MLP/Activation Functions.md
andy f65496a79f vault backup: 2023-05-23 09:28:54
Affected files:
.obsidian/workspace.json
STEM/AI/Neural Networks/MLP.md
STEM/AI/Neural Networks/MLP/Activation Functions.md
STEM/AI/Neural Networks/MLP/Back-Propagation.md
STEM/AI/Neural Networks/MLP/Decision Boundary.md
STEM/img/hidden-neuron-decision.png
STEM/img/mlp-non-linear-decision.png
STEM/img/mlp-xor-2.png
STEM/img/mlp-xor.png
STEM/img/sigmoid.png
STEM/img/tlu.png
2023-05-23 09:28:54 +01:00

32 lines
774 B
Markdown

## Sigmoid
- Logistic function
- Normalises
- Introduces non-linearity
- Easy to take derivative
$$\frac d {dx} \sigma(x)=
\frac d {dx} \left[
\frac 1 {1+e^{-x}}
\right]
=\sigma(x)\cdot(1-\sigma(x))$$
![[sigmoid.png]]
### Derivative
$$y_j(n)=\varphi_j(v_j(n))=
\frac 1 {1+e^{-v_j(n)}}$$
$$\frac{\partial y_j(n)}{\partial v_j(n)}=
\varphi_j'(v_j(n))=
\frac{e^{-v_j(n)}}{(1+e^{-v_j(n)})^2}=
y_j(n)(1-y_j(n))$$
- Nice derivative
- Max value of $\varphi_j'(v_j(n))$ occurs when $y_j(n)=0.5$
- Min value of 0 when $y_j=0$ or $1$
- Initial weights chosen so not saturated at 0 or 1
If $y=\frac u v$
Where $u$ and $v$ are differential functions
$$\frac{dy}{dx}=\frac d {dx}\left(\frac u v\right)$$
$$\frac{dy}{dx}=
\frac {v \frac d {dx}(u) - u\frac d {dx}(v)} {v^2}$$