## Sigmoid - Logistic function - Normalises - Introduces non-linearity - Easy to take derivative $$\frac d {dx} \sigma(x)= \frac d {dx} \left[ \frac 1 {1+e^{-x}} \right] =\sigma(x)\cdot(1-\sigma(x))$$ ![[sigmoid.png]] ### Derivative $$y_j(n)=\varphi_j(v_j(n))= \frac 1 {1+e^{-v_j(n)}}$$ $$\frac{\partial y_j(n)}{\partial v_j(n)}= \varphi_j'(v_j(n))= \frac{e^{-v_j(n)}}{(1+e^{-v_j(n)})^2}= y_j(n)(1-y_j(n))$$ - Nice derivative - Max value of $\varphi_j'(v_j(n))$ occurs when $y_j(n)=0.5$ - Min value of 0 when $y_j=0$ or $1$ - Initial weights chosen so not saturated at 0 or 1 If $y=\frac u v$ Where $u$ and $v$ are differential functions $$\frac{dy}{dx}=\frac d {dx}\left(\frac u v\right)$$ $$\frac{dy}{dx}= \frac {v \frac d {dx}(u) - u\frac d {dx}(v)} {v^2}$$