vault backup: 2023-05-23 09:28:54
Affected files: .obsidian/workspace.json STEM/AI/Neural Networks/MLP.md STEM/AI/Neural Networks/MLP/Activation Functions.md STEM/AI/Neural Networks/MLP/Back-Propagation.md STEM/AI/Neural Networks/MLP/Decision Boundary.md STEM/img/hidden-neuron-decision.png STEM/img/mlp-non-linear-decision.png STEM/img/mlp-xor-2.png STEM/img/mlp-xor.png STEM/img/sigmoid.png STEM/img/tlu.png
This commit is contained in:
parent
f0e8559252
commit
f65496a79f
@ -12,4 +12,11 @@ A finite feed-forward MLP with 1 hidden layer can in theory approximate any math
|
||||
- In practice not trainable with [[Back-Propagation|BP]]
|
||||
|
||||
![[activation-function.png]]
|
||||
![[mlp-arch-diagram.png]]
|
||||
![[mlp-arch-diagram.png]]
|
||||
## Weight Matrix
|
||||
- Use matrix multiplication for layer output
|
||||
- TLU is hard limiter
|
||||
![[tlu.png]]
|
||||
- $o_1$ to $o_4$ must all be one to overcome -3.5 bias and force output to 1
|
||||
![[mlp-non-linear-decision.png]]
|
||||
- Can generate a non-linear decision boundary
|
@ -0,0 +1,32 @@
|
||||
## Sigmoid
|
||||
- Logistic function
|
||||
- Normalises
|
||||
- Introduces non-linearity
|
||||
- Easy to take derivative
|
||||
$$\frac d {dx} \sigma(x)=
|
||||
\frac d {dx} \left[
|
||||
\frac 1 {1+e^{-x}}
|
||||
\right]
|
||||
=\sigma(x)\cdot(1-\sigma(x))$$
|
||||
|
||||
![[sigmoid.png]]
|
||||
### Derivative
|
||||
|
||||
$$y_j(n)=\varphi_j(v_j(n))=
|
||||
\frac 1 {1+e^{-v_j(n)}}$$
|
||||
$$\frac{\partial y_j(n)}{\partial v_j(n)}=
|
||||
\varphi_j'(v_j(n))=
|
||||
\frac{e^{-v_j(n)}}{(1+e^{-v_j(n)})^2}=
|
||||
y_j(n)(1-y_j(n))$$
|
||||
- Nice derivative
|
||||
- Max value of $\varphi_j'(v_j(n))$ occurs when $y_j(n)=0.5$
|
||||
- Min value of 0 when $y_j=0$ or $1$
|
||||
- Initial weights chosen so not saturated at 0 or 1
|
||||
|
||||
If $y=\frac u v$
|
||||
Where $u$ and $v$ are differential functions
|
||||
|
||||
$$\frac{dy}{dx}=\frac d {dx}\left(\frac u v\right)$$
|
||||
|
||||
$$\frac{dy}{dx}=
|
||||
\frac {v \frac d {dx}(u) - u\frac d {dx}(v)} {v^2}$$
|
@ -103,4 +103,5 @@ $$\Delta w_{ji}(n)=\eta\cdot\delta_j(n)\cdot y_i(n)$$
|
||||
- Proportional to the change in weights last iteration
|
||||
- Can shoot past local minima if descending quickly
|
||||
|
||||
![[mlp-global-minimum.png]]
|
||||
![[mlp-global-minimum.png]]
|
||||
|
||||
|
4
AI/Neural Networks/MLP/Decision Boundary.md
Normal file
4
AI/Neural Networks/MLP/Decision Boundary.md
Normal file
@ -0,0 +1,4 @@
|
||||
![[hidden-neuron-decision.png]]
|
||||
![[mlp-xor.png]]
|
||||
|
||||
![[mlp-xor-2.png]]
|
BIN
img/hidden-neuron-decision.png
Normal file
BIN
img/hidden-neuron-decision.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 106 KiB |
BIN
img/mlp-non-linear-decision.png
Normal file
BIN
img/mlp-non-linear-decision.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 60 KiB |
BIN
img/mlp-xor-2.png
Normal file
BIN
img/mlp-xor-2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 120 KiB |
BIN
img/mlp-xor.png
Normal file
BIN
img/mlp-xor.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 72 KiB |
BIN
img/sigmoid.png
Normal file
BIN
img/sigmoid.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 25 KiB |
BIN
img/tlu.png
Normal file
BIN
img/tlu.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 54 KiB |
Loading…
Reference in New Issue
Block a user