andy
64276f270d
Affected files: .obsidian/graph.json .obsidian/workspace-mobile.json .obsidian/workspace.json STEM/AI/Literature.md STEM/AI/Neural Networks/MLP.md STEM/AI/Properties.md STEM/Quantum/Orbitals.md STEM/Quantum/Schrödinger.md STEM/Quantum/Wave Function.md STEM/Signal Proc/Convolution.md STEM/Signal Proc/Image/Image Processing.md STEM/img/hydrogen-electron-density.png STEM/img/hydrogen-wave-function.png STEM/img/orbitals-radius.png STEM/img/radial-equations.png STEM/img/radius-electron-density-wf.png STEM/img/wave-function-nodes.png STEM/img/wave-function-polar-segment.png STEM/img/wave-function-polar.png
32 lines
1.2 KiB
Markdown
32 lines
1.2 KiB
Markdown
$$-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi=E\psi$$
|
||
- Time Independent
|
||
- $\psi$ is the [[Wave Function]]
|
||
|
||
Quantum counterpart of Newton's second law in classical mechanics
|
||
|
||
$$F=ma$$
|
||
[From](https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation)
|
||
|
||
Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of a [wave function](https://en.wikipedia.org/wiki/Wave_function), the quantum-mechanical characterization of an isolated physical system.
|
||
|
||
[From](https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation)
|
||
|
||
[Time–Independent Schrödinger Equation](https://homepage.univie.ac.at/reinhold.bertlmann/pdfs/T2_Skript_Ch_4.pdf)
|
||
[RadialEquation.pdf](https://physics.weber.edu/schroeder/quantum/RadialEquation.pdf)
|
||
|
||
## Hamiltonian
|
||
- Operator
|
||
- Total energy of a system
|
||
|
||
- Kinetic + Potential energy
|
||
|
||
$$\hat{H}=\hat{T}+\hat{V}$$
|
||
- $\hat{V}$
|
||
- Potential Energy
|
||
- $\hat{T}=\frac{\hat{p}\cdot\hat{p}}{2m}=-\frac{\hbar^2}{2m}\nabla^2$
|
||
- Kinetic Energy
|
||
- $\hat{p}=-i\hbar\nabla$
|
||
- Momentum operator
|
||
|
||
## Wavefunction Normalisation
|
||
- Adds up to 1 under the curve |