vault backup: 2023-05-23 17:05:48

Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
STEM/AI/Literature.md
STEM/AI/Neural Networks/MLP.md
STEM/AI/Properties.md
STEM/Quantum/Orbitals.md
STEM/Quantum/Schrödinger.md
STEM/Quantum/Wave Function.md
STEM/Signal Proc/Convolution.md
STEM/Signal Proc/Image/Image Processing.md
STEM/img/hydrogen-electron-density.png
STEM/img/hydrogen-wave-function.png
STEM/img/orbitals-radius.png
STEM/img/radial-equations.png
STEM/img/radius-electron-density-wf.png
STEM/img/wave-function-nodes.png
STEM/img/wave-function-polar-segment.png
STEM/img/wave-function-polar.png
This commit is contained in:
andy 2023-05-23 17:05:48 +01:00
parent f65496a79f
commit 64276f270d
16 changed files with 70 additions and 25 deletions

View File

@ -1,7 +1,7 @@
#lit
[https://web.stanford.edu/~jurafsky/slp3/A.pdf](https://web.stanford.edu/~jurafsky/slp3/A.pdf)
[Towards Data Science: 3 Things You Need To Know Before You Train-Test Split](https://towardsdatascience.com/3-things-you-need-to-know-before-you-train-test-split-869dfabb7e50)
[https://machinelearningmastery.com/train-final-machine-learning-model/](https://machinelearningmastery.com/train-final-machine-learning-model/)
[https://medium.com/@canerkilinc/hands-on-tensorflow-2-0-multi-label-classifications-with-mlp-88fc97d6a7e6](https://medium.com/@canerkilinc/hands-on-tensorflow-2-0-multi-label-classifications-with-mlp-88fc97d6a7e6)
[https://stackoverflow.com/questions/61557536/how-tensorflow-keras-go-from-one-hot-encoded-outputs-to-class-predictions-for](https://stackoverflow.com/questions/61557536/how-tensorflow-keras-go-from-one-hot-encoded-outputs-to-class-predictions-for)
[https://stackoverflow.com/questions/35226198/is-this-one-hot-encoding-in-tensorflow-fast-or-flawed-for-any-reason/35227732#35227732](https://stackoverflow.com/questions/35226198/is-this-one-hot-encoding-in-tensorflow-fast-or-flawed-for-any-reason/35227732#35227732)
[train-final-machine-learning-model](https://machinelearningmastery.com/train-final-machine-learning-model/)
[hands-on-tensorflow-2-0-multi-label-classifications-with-mlp](https://medium.com/@canerkilinc/hands-on-tensorflow-2-0-multi-label-classifications-with-mlp-88fc97d6a7e6)
[stackoverflow - how-tensorflow-keras-go-from-one-hot-encoded-outputs-to-class-predictions-for](https://stackoverflow.com/questions/61557536/how-tensorflow-keras-go-from-one-hot-encoded-outputs-to-class-predictions-for)
[stackoverflow - is-this-one-hot-encoding-in-tensorflow-fast-or-flawed-for-any-reason](https://stackoverflow.com/questions/35226198/is-this-one-hot-encoding-in-tensorflow-fast-or-flawed-for-any-reason/35227732#35227732)

View File

@ -19,4 +19,4 @@ A finite feed-forward MLP with 1 hidden layer can in theory approximate any math
![[tlu.png]]
- $o_1$ to $o_4$ must all be one to overcome -3.5 bias and force output to 1
![[mlp-non-linear-decision.png]]
- Can generate a non-linear decision boundary
- Can generate a non-linear [[Decision Boundary|decision boundary]]

View File

@ -36,13 +36,13 @@ Explanation-based learning uses both
## Level of Explanation
- Classical has emphasis on building symbolic representations
- Models cognition as sequential processing of symbolic representations
- Neural nets emphasis on parallel distributed processing models
- [[Properties+Capabilities|Neural nets]] emphasis on parallel distributed processing models
- Models assume information processing takes place through interactions of large numbers of neurons
## Processing style
- Classical processing is sequential
- Von Neumann Machine
- Neural nets use parallelism everywhere
- [[Properties+Capabilities|Neural nets]] use parallelism everywhere
- Source of flexibility
- Robust
@ -50,7 +50,7 @@ Explanation-based learning uses both
- Classical emphasises language of thought
- Symbolic representation has quasi-linguistic structure
- New symbols created from compositionality
- Neural nets have problem describing nature and structure of representation
- [[Properties+Capabilities|Neural nets]] have problem describing nature and structure of representation
Symbolic AI is the formal manipulation of a language of algorithms and data representations in a top-down fashion

View File

@ -1,14 +1,6 @@
$$\psi(r,\theta,\phi)=R(r)\cdot Y_{ml}(\theta, \phi)$$
Wave functions are products of
Radial Function
- $R_{n,l}(r)$
Spherical Harmonic
- $Y_{ml}(\theta, \phi)$
[[Wave Function]]
Absolute value of wave function squared gives probability density of finding electron inside differential volume $dV$ centred on $r, \theta, \phi$
$$|\psi(r,\theta,\phi)|^2$$
# Quantum Numbers
## Quantum Numbers
$$n$$
Principal quantum number
- 1, 2, 3...
@ -23,4 +15,31 @@ Orbital Angualar Momentum Number
$$m$$
Z-component / Magentic of $l$
- $-l$ to $+l$
- ***Orientation*** of orbital
- ***Orientation*** of orbital
![[wave-function-polar-segment.png]]
## Filling
1. Aufbau
- Start lowest in energy
2. Pauli's Exclusion
- Max two electrons per orbital
- No two electrons can have same n, l, m, s tuple
3. Hund's Rule of Maximum Multiplicity
- Orbitals with same energy filled one at a time
- Degenerate
![[orbitals-radius.png]]
![[wave-function-nodes.png]]
## Radial
![[radial-equations.png]]
- Z = Atomic number
- Bohr radius
- $a_0=\frac \hbar {\alpha mc}$
- Normalisation
- $\int_0^\infty r^2R_{nl}^*R_{nl}dr=1$
![[radius-electron-density-wf.png]]

View File

@ -1,6 +1,6 @@
$$-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi=E\psi$$
- Time Independent
- $\psi$ is the wave function
- $\psi$ is the [[Wave Function]]
Quantum counterpart of Newton's second law in classical mechanics

21
Quantum/Wave Function.md Normal file
View File

@ -0,0 +1,21 @@
$$\psi(r,\theta,\phi)=R(r)\cdot Y_{ml}(\theta, \phi)$$
Wave functions are products of
Radial Function
- $R_{n,l}(r)$
Spherical Harmonic
- $Y_{ml}(\theta, \phi)$
Forms [[Orbitals]]
Absolute value of wave function squared gives probability density of finding electron inside differential volume $dV$ centred on $r, \theta, \phi$
$$|\psi(r,\theta,\phi)|^2$$
![[wave-function-polar.png]]
![[hydrogen-wave-function.png]]
![[wave-function-polar-segment.png]]
![[wave-function-nodes.png]]
![[hydrogen-electron-density.png]]
![[radius-electron-density-wf.png]]

View File

@ -6,13 +6,13 @@ $$x(t)=x_1(t)\circledast x_2(t)=\int_{-\infty}^\infty x_1(t-\tau)\cdot x_2(\tau)
# Properties
1. $x_1(t)\circledast x_2(t)=x_2(t)\circledast x_1(t)$
1. Commutativity
- Commutativity
2. $(x_1(t)\circledast x_2(t))\circledast x_3(t)=x_1(t)\circledast (x_2(t)\circledast x_3(t))$
1. Associativity
- Associativity
3. $x_1(t)\circledast [x_2(t)+x_3(t)]=x_1(t)\circledast x_2(t)+ x_1(t)\circledast x_3(t)$
1. Distributivity
- Distributivity
4. $Ax_1(t)\circledast Bx_2(t)=AB[x_1(t)\circledast x_2(t)]$
1. Associativity with Scalar
- Associativity with Scalar
5. Symmetrical graph about origin
# Applications
@ -23,4 +23,8 @@ $$x(t)=x_1(t)\circledast x_2(t)=\int_{-\infty}^\infty x_1(t-\tau)\cdot x_2(\tau)
- Find system output given input and transfer function
# Polynomial Multiplication
- Convolving coefficients of two poly gives coefficients of product
- Convolving coefficients of two poly gives coefficients of product
# Discrete
$$G[i,j]=H[u,v]\circledast F[i,j]$$
$$G[i,j]=\sum^k_{u=-k}\sum^k_{v=-k} H[u,v]F[i-u,j-v]$$

View File

@ -0,0 +1 @@
[[Convolution#Discrete]]

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

BIN
img/orbitals-radius.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

BIN
img/radial-equations.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

BIN
img/wave-function-nodes.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

BIN
img/wave-function-polar.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB