stem/Quantum/Schrödinger.md
andy 64276f270d vault backup: 2023-05-23 17:05:48
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
STEM/AI/Literature.md
STEM/AI/Neural Networks/MLP.md
STEM/AI/Properties.md
STEM/Quantum/Orbitals.md
STEM/Quantum/Schrödinger.md
STEM/Quantum/Wave Function.md
STEM/Signal Proc/Convolution.md
STEM/Signal Proc/Image/Image Processing.md
STEM/img/hydrogen-electron-density.png
STEM/img/hydrogen-wave-function.png
STEM/img/orbitals-radius.png
STEM/img/radial-equations.png
STEM/img/radius-electron-density-wf.png
STEM/img/wave-function-nodes.png
STEM/img/wave-function-polar-segment.png
STEM/img/wave-function-polar.png
2023-05-23 17:05:48 +01:00

1.2 KiB
Raw Blame History

-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi=E\psi

Quantum counterpart of Newton's second law in classical mechanics

F=ma

From

Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of a wave function, the quantum-mechanical characterization of an isolated physical system.

From

TimeIndependent Schrödinger Equation RadialEquation.pdf

Hamiltonian

  • Operator

  • Total energy of a system

  • Kinetic + Potential energy

\hat{H}=\hat{T}+\hat{V}
  • \hat{V}
    • Potential Energy
  • \hat{T}=\frac{\hat{p}\cdot\hat{p}}{2m}=-\frac{\hbar^2}{2m}\nabla^2
    • Kinetic Energy
  • \hat{p}=-i\hbar\nabla
    • Momentum operator

Wavefunction Normalisation

  • Adds up to 1 under the curve