andy
d7ab8f329a
Affected files: Money/Assets/Financial Instruments.md Money/Assets/Security.md Money/Markets/Markets.md Politcs/Now.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/FCN/FCN.md STEM/AI/Neural Networks/CNN/FCN/FlowNet.md STEM/AI/Neural Networks/CNN/FCN/Highway Networks.md STEM/AI/Neural Networks/CNN/FCN/ResNet.md STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md STEM/AI/Neural Networks/CNN/FCN/Super-Resolution.md STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/CNN/GAN/StackGAN.md STEM/AI/Neural Networks/CNN/Inception Layer.md STEM/AI/Neural Networks/CNN/Interpretation.md STEM/AI/Neural Networks/CNN/Max Pooling.md STEM/AI/Neural Networks/CNN/Normalisation.md STEM/AI/Neural Networks/CNN/UpConv.md STEM/AI/Neural Networks/CV/Layer Structure.md STEM/AI/Neural Networks/MLP/MLP.md STEM/AI/Neural Networks/Neural Networks.md STEM/AI/Neural Networks/RNN/LSTM.md STEM/AI/Neural Networks/RNN/RNN.md STEM/AI/Neural Networks/RNN/VQA.md STEM/AI/Neural Networks/SLP/Least Mean Square.md STEM/AI/Neural Networks/SLP/Perceptron Convergence.md STEM/AI/Neural Networks/SLP/SLP.md STEM/AI/Neural Networks/Transformers/LLM.md STEM/AI/Neural Networks/Transformers/Transformers.md STEM/AI/Properties.md STEM/CS/Language Binding.md STEM/Light.md STEM/Maths/Tensor.md STEM/Quantum/Orbitals.md STEM/Quantum/Schrödinger.md STEM/Quantum/Standard Model.md STEM/Quantum/Wave Function.md Tattoo/Music.md Tattoo/Plans.md Tattoo/Sources.md |
||
---|---|---|
.. | ||
FCN | ||
GAN | ||
CNN.md | ||
Convolutional Layer.md | ||
Examples.md | ||
Inception Layer.md | ||
Interpretation.md | ||
Max Pooling.md | ||
Normalisation.md | ||
README.md | ||
UpConv.md |
Before 2010s
- Data hungry
- Need lots of training data
- Processing power
- Niche
- No-one cared/knew about CNNs
After
- ImageNet
- 16m images, 1000 classes
- GPUs
- General processing GPUs
- CUDA
- NIPS/ECCV 2012
- Double digit % gain on ImageNet accuracy
Full Connected
- Move from convolutional operations towards vector output
- Stochastic drop-out
- Sub-sample channels and only connect some to dense layers
As a Descriptor
- Most powerful as a deeply learned feature extractor
- Dense classifier at the end isn't fantastic
- Use SVM to classify prior to penultimate layer
Finetuning
- Observations
- Most CNNs have similar weights in conv1
- Most useful CNNs have several conv layers
- Many weights
- Lots of training data
- Training data is hard to get
- Labelling
- Reuse weights from other network
- Freeze weights in first 3-5 conv layers
- Learning rate = 0
- Randomly initialise remaining layers
- Continue with existing weights