vault backup: 2023-06-04 22:30:39
Affected files: .obsidian/app.json .obsidian/workspace-mobile.json .obsidian/workspace.json STEM/AI/Neural Networks/CNN/CNN.md STEM/AI/Neural Networks/CNN/GAN/cGAN.md STEM/AI/Neural Networks/MLP/Back-Propagation.md
This commit is contained in:
parent
1c441487f9
commit
5f167f25a4
@ -42,13 +42,13 @@
|
||||
|
||||
![fine-tuning-freezing](../../../img/fine-tuning-freezing.png)
|
||||
# Training
|
||||
- Validation & training [loss](../Deep%20Learning.md#Loss Function)
|
||||
- Validation & training [loss](../Deep%20Learning.md#Loss%20Function)
|
||||
- Early
|
||||
- Under-fitting
|
||||
- Training not representative
|
||||
- Later
|
||||
- Overfitting
|
||||
- V.[loss](../Deep%20Learning.md#Loss Function) can help adjust learning rate
|
||||
- V.[loss](../Deep%20Learning.md#Loss%20Function) can help adjust learning rate
|
||||
- Or indicate when to stop training
|
||||
|
||||
![under-over-fitting](../../../img/under-over-fitting.png)
|
@ -1,6 +1,6 @@
|
||||
Conditional [GAN](GAN.md)
|
||||
|
||||
- Hard to control with [AM](../Interpretation.md#Activation Maximisation)
|
||||
- Hard to control with [AM](../Interpretation.md#Activation%20Maximisation)
|
||||
- Unconditional [GAN](GAN.md)
|
||||
- Condition synthesis on a class label
|
||||
- Concatenate unconditional code with conditioning vector
|
||||
|
@ -22,16 +22,14 @@ $$\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}=
|
||||
$$
|
||||
|
||||
#### From 4
|
||||
$$\frac{\partial\mathfrak E(n)}{\partial e_j(n)}=
|
||||
e_j(n)$$
|
||||
$$\frac{\partial\mathfrak E(n)}{\partial e_j(n)}=e_j(n)$$
|
||||
|
||||
#### From 1
|
||||
$$\frac{\partial e_j(n)}{\partial y_j(n)}=-1$$
|
||||
#### From 3 (note prime)
|
||||
$$\frac{\partial y_j(n)}{\partial v_j(n)}=
|
||||
\varphi_j'(v_j(n))$$
|
||||
$$\frac{\partial y_j(n)}{\partial v_j(n)}=\varphi_j'(v_j(n))$$
|
||||
#### From 2
|
||||
$$\frac{\partial v_j(n)}{\partial w_{ji}(n)}=
|
||||
y_i(n)$$
|
||||
$$\frac{\partial v_j(n)}{\partial w_{ji}(n)}=y_i(n)$$
|
||||
|
||||
## Composite
|
||||
$$\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}=
|
||||
@ -40,10 +38,9 @@ $$\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}=
|
||||
y_i(n)
|
||||
$$
|
||||
|
||||
$$\Delta w_{ji}(n)=
|
||||
-\eta\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}$$
|
||||
$$\Delta w_{ji}(n)=
|
||||
\eta\delta_j(n)y_i(n)$$
|
||||
$$\Delta w_{ji}(n)=-\eta\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}$$
|
||||
$$\Delta w_{ji}(n)=\eta\delta_j(n)y_i(n)$$
|
||||
|
||||
## Gradients
|
||||
#### Output Local
|
||||
$$\delta_j(n)=-\frac{\partial\mathfrak E (n)}{\partial v_j(n)}$$
|
||||
|
Loading…
Reference in New Issue
Block a user