andy
64276f270d
Affected files: .obsidian/graph.json .obsidian/workspace-mobile.json .obsidian/workspace.json STEM/AI/Literature.md STEM/AI/Neural Networks/MLP.md STEM/AI/Properties.md STEM/Quantum/Orbitals.md STEM/Quantum/Schrödinger.md STEM/Quantum/Wave Function.md STEM/Signal Proc/Convolution.md STEM/Signal Proc/Image/Image Processing.md STEM/img/hydrogen-electron-density.png STEM/img/hydrogen-wave-function.png STEM/img/orbitals-radius.png STEM/img/radial-equations.png STEM/img/radius-electron-density-wf.png STEM/img/wave-function-nodes.png STEM/img/wave-function-polar-segment.png STEM/img/wave-function-polar.png
1.2 KiB
1.2 KiB
-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi=E\psi
- Time Independent
\psi
is the Wave Function
Quantum counterpart of Newton's second law in classical mechanics
F=ma
Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of a wave function, the quantum-mechanical characterization of an isolated physical system.
Time–Independent Schrödinger Equation RadialEquation.pdf
Hamiltonian
-
Operator
-
Total energy of a system
-
Kinetic + Potential energy
\hat{H}=\hat{T}+\hat{V}
\hat{V}
- Potential Energy
\hat{T}=\frac{\hat{p}\cdot\hat{p}}{2m}=-\frac{\hbar^2}{2m}\nabla^2
- Kinetic Energy
\hat{p}=-i\hbar\nabla
- Momentum operator
Wavefunction Normalisation
- Adds up to 1 under the curve