andy
1c441487f9
Affected files: .obsidian/workspace-mobile.json .obsidian/workspace.json Lab/Scratch Domain.md Money/Econ.md STEM/AI/Classification/Classification.md STEM/AI/Classification/README.md STEM/AI/Classification/Supervised.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/FCN/FCN.md STEM/AI/Neural Networks/CNN/FCN/FlowNet.md STEM/AI/Neural Networks/CV/Filters.md STEM/img/coordinate-change.png STEM/img/gaussian-class.png Tattoo/Engineering.md Want.md
34 lines
973 B
Markdown
34 lines
973 B
Markdown
*Given an observation, determine one class from a set of classes that best explains the observation*
|
||
|
||
***Features are discrete or continuous***
|
||
|
||
- 2 category classifier
|
||
- Dichotomiser
|
||
|
||
# Argmax
|
||
Argument that gives the maximum value from a target function
|
||
|
||
# Gaussian Classifier
|
||
[Training](Supervised.md)
|
||
- Each class $i$ has it's own Gaussian $N_i=N(m_i,v_i)$
|
||
|
||
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)$$
|
||
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)$$
|
||
- With equal priors
|
||
|
||
![](../../img/gaussian-class.png)
|
||
|
||
# Discrete Classifier
|
||
- Each class $i$ has it's own histogram $H_i$
|
||
- Describes the probability of each observation type $k$
|
||
- $P(o_t=k|H_i)$, based on class-specific type counts
|
||
|
||
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)$$
|
||
- Nothing else known about classes
|
||
|
||
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)$$
|
||
- Given class priors $P(H_i)$
|
||
- Maximum posterior probability
|
||
- Bayes
|
||
|
||
![](../../img/coordinate-change.png) |