JavaScript promise rejection: Loading CSS chunk katex failed. (error: https://git.sarsoo.xyz/assets/css/katex.fb6ef55c.css). Open browser console to see more details.
stem/AI/Classification
andy b24f551589 vault backup: 2023-06-12 19:07:33
Affected files:
.obsidian/backlink.json
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
Events/🪣🪣🪣.md
Health/ADHD.md
STEM/AI/Classification/Gradient Boosting Machine.md
STEM/AI/Neural Networks/CV/Visual Search/Visual Search.md
STEM/AI/Neural Networks/Learning/Tasks.md
STEM/AI/Pattern Matching/Dynamic Time Warping.md
STEM/AI/Problem Solving.md
STEM/CS/Regex.md
STEM/img/dtw-graph-unit.png
STEM/img/dtw-graph.png
STEM/img/dtw-gross-partitioning.png
STEM/img/dtw-heatmap-distortion.png
STEM/img/dtw-heatmap.png
STEM/img/dtw-possible-movements.png
STEM/img/dtw-score-pruning.png
STEM/img/nn-tasks-function-approx-inverse.png
STEM/img/nn-tasks-function-approx.png
STEM/img/nn-tasks-pattern.png
STEM/img/problem-solving-arch.png
STEM/img/problem-solving-goal-based.png
STEM/img/problem-solving-reflex.png
STEM/img/visual-search-arch.png
STEM/img/visual-search-crude.png
2023-06-12 19:07:33 +01:00
..
Supervised vault backup: 2023-06-08 17:52:08 2023-06-08 17:52:09 +01:00
Classification.md vault backup: 2023-06-07 09:02:27 2023-06-07 09:02:27 +01:00
Decision Trees.md vault backup: 2023-06-07 09:02:27 2023-06-07 09:02:27 +01:00
Gradient Boosting Machine.md vault backup: 2023-06-12 19:07:33 2023-06-12 19:07:33 +01:00
Logistic Regression.md vault backup: 2023-06-07 09:02:27 2023-06-07 09:02:27 +01:00
Random Forest.md vault backup: 2023-06-07 09:02:27 2023-06-07 09:02:27 +01:00
README.md vault backup: 2023-06-02 17:17:29 2023-06-02 17:17:29 +01:00

Given an observation, determine one class from a set of classes that best explains the observation

Features are discrete or continuous

  • 2 category classifier
    • Dichotomiser

Argmax

Argument that gives the maximum value from a target function

Gaussian Classifier

Training

  • Each class $i$ has it's own Gaussian N_i=N(m_i,v_i)
\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)
\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)
  • With equal priors

Discrete Classifier

  • Each class i has it's own histogram H_i
    • Describes the probability of each observation type k
    • P(o_t=k|H_i), based on class-specific type counts
\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)
  • Nothing else known about classes
\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)
  • Given class priors P(H_i)
  • Maximum posterior probability
    • Bayes