stem/AI/Classification/Classification.md

34 lines
984 B
Markdown
Raw Normal View History

*Given an observation, determine one class from a set of classes that best explains the observation*
***Features are discrete or continuous***
- 2 category classifier
- Dichotomiser
# Argmax
Argument that gives the maximum value from a target function
# Gaussian Classifier
vault backup: 2023-06-07 09:02:27 Affected files: STEM/AI/Classification/Classification.md STEM/AI/Classification/Decision Trees.md STEM/AI/Classification/Gradient Boosting Machine.md STEM/AI/Classification/Logistic Regression.md STEM/AI/Classification/Random Forest.md STEM/AI/Classification/Supervised.md STEM/AI/Classification/Supervised/README.md STEM/AI/Classification/Supervised/SVM.md STEM/AI/Classification/Supervised/Supervised.md STEM/AI/Learning.md STEM/AI/Neural Networks/Learning/Boltzmann.md STEM/AI/Neural Networks/Learning/Competitive Learning.md STEM/AI/Neural Networks/Learning/Credit-Assignment Problem.md STEM/AI/Neural Networks/Learning/Hebbian.md STEM/AI/Neural Networks/Learning/Learning.md STEM/AI/Neural Networks/Learning/README.md STEM/AI/Neural Networks/RNN/Autoencoder.md STEM/AI/Neural Networks/RNN/Deep Image Prior.md STEM/AI/Neural Networks/RNN/MoCo.md STEM/AI/Neural Networks/RNN/Representation Learning.md STEM/AI/Neural Networks/RNN/SimCLR.md STEM/img/comp-learning.png STEM/img/competitive-geometric.png STEM/img/confusion-matrix.png STEM/img/decision-tree.png STEM/img/deep-image-prior-arch.png STEM/img/deep-image-prior-results.png STEM/img/hebb-learning.png STEM/img/moco.png STEM/img/receiver-operator-curve.png STEM/img/reinforcement-learning.png STEM/img/rnn+autoencoder-variational.png STEM/img/rnn+autoencoder.png STEM/img/simclr.png STEM/img/sup-representation-learning.png STEM/img/svm-c.png STEM/img/svm-non-linear-project.png STEM/img/svm-non-linear-separated.png STEM/img/svm-non-linear.png STEM/img/svm-optimal-plane.png STEM/img/svm.png STEM/img/unsup-representation-learning.png
2023-06-07 09:02:27 +01:00
[Training](Supervised/Supervised.md)
- Each class $i$ has it's own Gaussian $N_i=N(m_i,v_i)$
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)$$
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)$$
- With equal priors
![](../../img/gaussian-class.png)
# Discrete Classifier
- Each class $i$ has it's own histogram $H_i$
- Describes the probability of each observation type $k$
- $P(o_t=k|H_i)$, based on class-specific type counts
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)$$
- Nothing else known about classes
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)$$
- Given class priors $P(H_i)$
- Maximum posterior probability
- Bayes
![](../../img/coordinate-change.png)