2023-06-02 17:17:29 +01:00
|
|
|
|
*Given an observation, determine one class from a set of classes that best explains the observation*
|
|
|
|
|
|
|
|
|
|
***Features are discrete or continuous***
|
|
|
|
|
|
|
|
|
|
- 2 category classifier
|
|
|
|
|
- Dichotomiser
|
|
|
|
|
|
|
|
|
|
# Argmax
|
|
|
|
|
Argument that gives the maximum value from a target function
|
|
|
|
|
|
|
|
|
|
# Gaussian Classifier
|
2023-06-07 09:02:27 +01:00
|
|
|
|
[Training](Supervised/Supervised.md)
|
2023-06-02 17:17:29 +01:00
|
|
|
|
- Each class $i$ has it's own Gaussian $N_i=N(m_i,v_i)$
|
|
|
|
|
|
|
|
|
|
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)$$
|
|
|
|
|
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)$$
|
|
|
|
|
- With equal priors
|
|
|
|
|
|
|
|
|
|
![](../../img/gaussian-class.png)
|
|
|
|
|
|
|
|
|
|
# Discrete Classifier
|
|
|
|
|
- Each class $i$ has it's own histogram $H_i$
|
|
|
|
|
- Describes the probability of each observation type $k$
|
|
|
|
|
- $P(o_t=k|H_i)$, based on class-specific type counts
|
|
|
|
|
|
|
|
|
|
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)$$
|
|
|
|
|
- Nothing else known about classes
|
|
|
|
|
|
|
|
|
|
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)$$
|
|
|
|
|
- Given class priors $P(H_i)$
|
|
|
|
|
- Maximum posterior probability
|
|
|
|
|
- Bayes
|
|
|
|
|
|
|
|
|
|
![](../../img/coordinate-change.png)
|