130 lines
3.8 KiB
Mathematica
130 lines
3.8 KiB
Mathematica
%% EEE3032 - Computer Vision and Pattern Recognition (ee3.cvpr)
|
|
%%
|
|
%% cvpr_visualsearch.m
|
|
%% Skeleton code provided as part of the coursework assessment
|
|
%%
|
|
%% This code will load in all descriptors pre-computed (by the
|
|
%% function cvpr_computedescriptors) from the images in the MSRCv2 dataset.
|
|
%%
|
|
%% It will pick a descriptor at random and compare all other descriptors to
|
|
%% it - by calling cvpr_compare. In doing so it will rank the images by
|
|
%% similarity to the randomly picked descriptor. Note that initially the
|
|
%% function cvpr_compare returns a random number - you need to code it
|
|
%% so that it returns the Euclidean distance or some other distance metric
|
|
%% between the two descriptors it is passed.
|
|
%%
|
|
%% (c) John Collomosse 2010 (J.Collomosse@surrey.ac.uk)
|
|
%% Centre for Vision Speech and Signal Processing (CVSSP)
|
|
%% University of Surrey, United Kingdom
|
|
|
|
close all;
|
|
clear all;
|
|
|
|
%% Edit the following line to the folder you unzipped the MSRCv2 dataset to
|
|
DATASET_FOLDER = 'dataset';
|
|
|
|
%% Folder that holds the results...
|
|
DESCRIPTOR_FOLDER = 'descriptors';
|
|
%% and within that folder, another folder to hold the descriptors
|
|
%% we are interested in working with
|
|
DESCRIPTOR_SUBFOLDER='globalRGBhisto';
|
|
|
|
|
|
%% 1) Load all the descriptors into "ALLFEAT"
|
|
%% each row of ALLFEAT is a descriptor (is an image)
|
|
|
|
ALLFEAT=[];
|
|
ALLFILES=cell(1,0);
|
|
ALLCATs=[];
|
|
ctr=1;
|
|
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
|
for filenum=1:length(allfiles)
|
|
fname=allfiles(filenum).name;
|
|
|
|
%identify photo category for PR calculation
|
|
split_string = split(fname, '_');
|
|
ALLCATs(filenum) = str2double(split_string(1));
|
|
|
|
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
|
|
img=double(imread(imgfname_full))./255;
|
|
thesefeat=[];
|
|
featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
|
load(featfile,'F');
|
|
ALLFILES{ctr}=imgfname_full;
|
|
ALLFEAT=[ALLFEAT ; F];
|
|
ctr=ctr+1;
|
|
end
|
|
|
|
% get counts for each category for PR calculation
|
|
CAT_HIST = histogram(ALLCATs).Values;
|
|
|
|
%% 2) Pick an image at random to be the query
|
|
NIMG=size(ALLFEAT,1); % number of images in collection
|
|
queryimg=floor(rand()*NIMG); % index of a random image
|
|
|
|
|
|
%% 3) Compute the distance of image to the query
|
|
dst=[];
|
|
for i=1:NIMG
|
|
candidate=ALLFEAT(i,:);
|
|
query=ALLFEAT(queryimg,:);
|
|
|
|
category=ALLCATs(i);
|
|
|
|
%% COMPARE FUNCTION
|
|
thedst=compareEuclidean(query,candidate);
|
|
dst=[dst ; [thedst i category]];
|
|
end
|
|
dst=sortrows(dst,1); % sort the results
|
|
|
|
%% 3.5) Calculate PR
|
|
precision_values=[];
|
|
recall_values=[];
|
|
query_row = dst(1,:);
|
|
query_category = query_row(1,3);
|
|
for i=1:NIMG
|
|
|
|
rows = dst(1:i, :);
|
|
|
|
correct_results = 0;
|
|
incorrect_results = 0;
|
|
|
|
for n=1:i
|
|
row = rows(i, :);
|
|
category = row(3);
|
|
|
|
if category == query_category
|
|
correct_results = correct_results + 1;
|
|
else
|
|
incorrect_results = incorrect_results + 1;
|
|
end
|
|
|
|
end
|
|
|
|
precision = correct_results / i;
|
|
recall = correct_results / CAT_HIST(1,query_category);
|
|
|
|
precision_values(i) = precision;
|
|
recall_values(i) = recall;
|
|
end
|
|
|
|
% for i=1:NIMG
|
|
% [i, " -> p: ", precision_values(i), "r: ", recall_values(i)]
|
|
% end
|
|
|
|
%% 4) Visualise the results
|
|
%% These may be a little hard to see using imgshow
|
|
%% If you have access, try using imshow(outdisplay) or imagesc(outdisplay)
|
|
|
|
SHOW=15; % Show top 15 results
|
|
dst=dst(1:SHOW,:);
|
|
outdisplay=[];
|
|
for i=1:size(dst,1)
|
|
img=imread(ALLFILES{dst(i,2)});
|
|
img=img(1:2:end,1:2:end,:); % make image a quarter size
|
|
img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights)
|
|
outdisplay=[outdisplay img];
|
|
end
|
|
imgshow(outdisplay);
|
|
axis off;
|