257 lines
7.1 KiB
Matlab
257 lines
7.1 KiB
Matlab
%% EEE3032 - Computer Vision and Pattern Recognition (ee3.cvpr)
|
|
%%
|
|
%% cvpr_visualsearch.m
|
|
%% Skeleton code provided as part of the coursework assessment
|
|
%%
|
|
%% This code will load in all descriptors pre-computed (by the
|
|
%% function cvpr_computedescriptors) from the images in the MSRCv2 dataset.
|
|
%%
|
|
%% It will pick a descriptor at random and compare all other descriptors to
|
|
%% it - by calling cvpr_compare. In doing so it will rank the images by
|
|
%% similarity to the randomly picked descriptor. Note that initially the
|
|
%% function cvpr_compare returns a random number - you need to code it
|
|
%% so that it returns the Euclidean distance or some other distance metric
|
|
%% between the two descriptors it is passed.
|
|
%%
|
|
%% (c) John Collomosse 2010 (J.Collomosse@surrey.ac.uk)
|
|
%% Centre for Vision Speech and Signal Processing (CVSSP)
|
|
%% University of Surrey, United Kingdom
|
|
|
|
close all;
|
|
clear all;
|
|
|
|
%% Edit the following line to the folder you unzipped the MSRCv2 dataset to
|
|
DATASET_FOLDER = 'dataset';
|
|
|
|
%% Folder that holds the results...
|
|
DESCRIPTOR_FOLDER = 'descriptors';
|
|
%% and within that folder, another folder to hold the descriptors
|
|
%% we are interested in working with
|
|
% DESCRIPTOR_SUBFOLDER='avgRGB';
|
|
DESCRIPTOR_SUBFOLDER='globalRGBhisto';
|
|
% DESCRIPTOR_SUBFOLDER='spatialColour';
|
|
% DESCRIPTOR_SUBFOLDER='spatialTexture';
|
|
% DESCRIPTOR_SUBFOLDER='spatialColourTexture';
|
|
|
|
CATEGORIES = ["Farm Animal"
|
|
"Tree"
|
|
"Building"
|
|
"Plane"
|
|
"Cow"
|
|
"Face"
|
|
"Car"
|
|
"Bike"
|
|
"Sheep"
|
|
"Flower"
|
|
"Sign"
|
|
"Bird"
|
|
"Book Shelf"
|
|
"Bench"
|
|
"Cat"
|
|
"Dog"
|
|
"Road"
|
|
"Water Features"
|
|
"Human Figures"
|
|
"Coast"
|
|
];
|
|
|
|
QUERY_INDEXES=[301 358 384 436 447 476 509 537 572 5 61 80 97 127 179 181 217 266 276 333];
|
|
|
|
% 1_10 2_16 3_12 4_4 5_15 6_14 7_17 8_15 9_1 10_14 11_8 12_26 13_10 14_10
|
|
% 15_8 16_10 17_16 18_5 19_15 20_12
|
|
|
|
|
|
%% 1) Load all the descriptors into "ALLFEAT"
|
|
%% each row of ALLFEAT is a descriptor (is an image)
|
|
|
|
ALLFEAT=[];
|
|
ALLFILES=cell(1,0);
|
|
ALLCATs=[];
|
|
ctr=1;
|
|
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
|
for filenum=1:length(allfiles)
|
|
fname=allfiles(filenum).name;
|
|
|
|
%identify photo category for PR calculation
|
|
split_string = split(fname, '_');
|
|
ALLCATs(filenum) = str2double(split_string(1));
|
|
|
|
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
|
|
img=double(imread(imgfname_full))./255;
|
|
thesefeat=[];
|
|
featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
|
load(featfile,'F');
|
|
ALLFILES{ctr}=imgfname_full;
|
|
ALLFEAT=[ALLFEAT ; F];
|
|
ctr=ctr+1;
|
|
end
|
|
|
|
% get counts for each category for PR calculation
|
|
CAT_HIST = histogram(ALLCATs).Values;
|
|
CAT_TOTAL = length(CAT_HIST);
|
|
|
|
NIMG=size(ALLFEAT,1); % number of images in collection
|
|
|
|
confusion_matrix = zeros(CAT_TOTAL);
|
|
|
|
all_precision = [];
|
|
all_recall = [];
|
|
|
|
AP_values = zeros([1, CAT_TOTAL]);
|
|
for iteration=1:CAT_TOTAL
|
|
|
|
%% 2) Pick an image at random to be the query
|
|
queryimg=QUERY_INDEXES(iteration); % index of a random image
|
|
|
|
%% 3) Compute EigenModel
|
|
E = getEigenModel(ALLFEAT);
|
|
E = deflateEigen(E, 3);
|
|
|
|
%% 4) Project data to lower dimensionality
|
|
ALLFEAT=ALLFEAT-repmat(E.org,size(ALLFEAT,1),1);
|
|
ALLFEAT=((E.vct')*(ALLFEAT'))';
|
|
|
|
%% 3) Compute the distance of image to the query
|
|
dst=[];
|
|
for i=1:NIMG
|
|
candidate=ALLFEAT(i,:);
|
|
query=ALLFEAT(queryimg,:);
|
|
|
|
category=ALLCATs(i);
|
|
|
|
%% COMPARE FUNCTION
|
|
thedst=compareMahalanobis(E, query, candidate);
|
|
dst=[dst ; [thedst i category]];
|
|
end
|
|
dst=sortrows(dst,1); % sort the results
|
|
|
|
%% 4) Calculate PR
|
|
precision_values=zeros([1, NIMG-1]);
|
|
recall_values=zeros([1, NIMG-1]);
|
|
|
|
correct_at_n=zeros([1, NIMG-1]);
|
|
|
|
query_row = dst(1,:);
|
|
query_category = query_row(1,3);
|
|
if query_category ~= iteration
|
|
dst
|
|
end
|
|
fprintf('category was %s\n', CATEGORIES(query_category))
|
|
|
|
dst = dst(2:NIMG, :);
|
|
|
|
%calculate PR for each n
|
|
for i=1:size(dst, 1)
|
|
% NIMG-1 and j iterator variable is in order to skip calculating for query image
|
|
|
|
rows = dst(1:i, :);
|
|
|
|
correct_results = 0;
|
|
incorrect_results = 0;
|
|
|
|
if i > 1
|
|
for n=1:i - 1
|
|
row = rows(n, :);
|
|
category = row(3);
|
|
|
|
if category == iteration
|
|
correct_results = correct_results + 1;
|
|
else
|
|
incorrect_results = incorrect_results + 1;
|
|
end
|
|
|
|
end
|
|
end
|
|
|
|
% LAST ROW
|
|
row = rows(i, :);
|
|
category = row(3);
|
|
|
|
if category == iteration
|
|
correct_results = correct_results + 1;
|
|
correct_at_n(i) = 1;
|
|
else
|
|
incorrect_results = incorrect_results + 1;
|
|
end
|
|
|
|
precision = correct_results / i;
|
|
recall = correct_results / (CAT_HIST(1,iteration) - 1);
|
|
|
|
precision_values(i) = precision;
|
|
recall_values(i) = recall;
|
|
end
|
|
|
|
|
|
%% 5) calculate AP
|
|
average_precision = sum(precision_values .* correct_at_n) / CAT_HIST(1,iteration);
|
|
AP_values(iteration) = average_precision;
|
|
|
|
|
|
all_precision = [all_precision ; precision_values];
|
|
all_recall = [all_recall ; recall_values];
|
|
|
|
|
|
%% 6) plot PR curve
|
|
figure(1)
|
|
plot(recall_values, precision_values,'LineWidth',1.5);
|
|
hold on;
|
|
title('PR Curve');
|
|
xlabel('Recall');
|
|
ylabel('Precision');
|
|
xlim([0 1]);
|
|
ylim([0 1]);
|
|
|
|
|
|
%% 7) Visualise the results
|
|
%% These may be a little hard to see using imgshow
|
|
%% If you have access, try using imshow(outdisplay) or imagesc(outdisplay)
|
|
|
|
SHOW=25; % Show top 25 results
|
|
dst=dst(1:SHOW,:);
|
|
outdisplay=[];
|
|
for i=1:size(dst,1)
|
|
img=imread(ALLFILES{dst(i,2)});
|
|
img=img(1:2:end,1:2:end,:); % make image a quarter size
|
|
img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights)
|
|
outdisplay=[outdisplay img];
|
|
|
|
%populate confusion matrix
|
|
confusion_matrix(query_category, dst(i,3)) = confusion_matrix(query_category, dst(i,3)) + 1;
|
|
end
|
|
% figure(3)
|
|
% imgshow(outdisplay);
|
|
% axis off;
|
|
|
|
end
|
|
|
|
%% Plot average PR curve
|
|
figure(4)
|
|
mean_precision = mean(all_precision);
|
|
mean_recall = mean(all_recall);
|
|
plot(mean_recall, mean_precision,'LineWidth',5);
|
|
title('PR Curve');
|
|
xlabel('Average Recall');
|
|
ylabel('Average Precision');
|
|
xlim([0 1]);
|
|
ylim([0 1]);
|
|
|
|
% normalise confusion matrix
|
|
norm_confusion_matrix = confusion_matrix ./ sum(confusion_matrix, 'all');
|
|
|
|
%% 8 Calculate MAP
|
|
% figure(4)
|
|
% histogram(AP_values);
|
|
% title('Average Precision Distribution');
|
|
% ylabel('Count');
|
|
% xlabel('Average Precision');
|
|
% xlim([0, 1]);
|
|
|
|
MAP = mean(AP_values)
|
|
AP_sd = std(AP_values)
|
|
|
|
% figure(2)
|
|
% plot(1:CAT_TOTAL, AP_values);
|
|
% title('Average Precision Per Run');
|
|
% xlabel('Run');
|
|
% ylabel('Average Precision');
|