49 lines
1.8 KiB
Matlab
49 lines
1.8 KiB
Matlab
%% EEE3032 - Computer Vision and Pattern Recognition (ee3.cvpr)
|
|
%%
|
|
%% cvpr_computedescriptors.m
|
|
%% Skeleton code provided as part of the coursework assessment
|
|
%% This code will iterate through every image in the MSRCv2 dataset
|
|
%% and call a function 'extractRandom' to extract a descriptor from the
|
|
%% image. Currently that function returns just a random vector so should
|
|
%% be changed as part of the coursework exercise.
|
|
%%
|
|
%% (c) John Collomosse 2010 (J.Collomosse@surrey.ac.uk)
|
|
%% Centre for Vision Speech and Signal Processing (CVSSP)
|
|
%% University of Surrey, United Kingdom
|
|
|
|
close all;
|
|
clear all;
|
|
|
|
%% Edit the following line to the folder you unzipped the MSRCv2 dataset to
|
|
DATASET_FOLDER = 'dataset';
|
|
|
|
%% Create a folder to hold the results...
|
|
OUT_FOLDER = 'descriptors';
|
|
%% and within that folder, create another folder to hold these descriptors
|
|
%% the idea is all your descriptors are in individual folders - within
|
|
%% the folder specified as 'OUT_FOLDER'.
|
|
% OUT_SUBFOLDER='avgRGB';
|
|
OUT_SUBFOLDER='globalRGBhisto';
|
|
% OUT_SUBFOLDER='spatialColour';
|
|
% DESCRIPTOR_SUBFOLDER='spatialTexture';
|
|
% OUT_SUBFOLDER='spatialColourTexture';
|
|
|
|
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
|
for filenum=1:length(allfiles)
|
|
fname=allfiles(filenum).name;
|
|
fprintf('Processing file %d/%d - %s\n',filenum,length(allfiles),fname);
|
|
tic;
|
|
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
|
|
img=double(imread(imgfname_full))./255;
|
|
fout=[OUT_FOLDER,'/',OUT_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
|
|
|
%% EXTRACT FUNCTION
|
|
% F=extractAvgRGB(img);
|
|
F=extractGlobalColHist(img, 2, 1, 8, 0.05);
|
|
% F=extractSpatialColour(img, 2, 1);
|
|
% F=extractSpatialTexture(img, 2, 1, 8, 0.05);
|
|
% F=extractSpatialColourTexture(img);
|
|
save(fout,'F');
|
|
toc
|
|
end
|