added maha dist
This commit is contained in:
parent
a2575085de
commit
521f52a397
@ -22,10 +22,10 @@ OUT_FOLDER = 'descriptors';
|
|||||||
%% and within that folder, create another folder to hold these descriptors
|
%% and within that folder, create another folder to hold these descriptors
|
||||||
%% the idea is all your descriptors are in individual folders - within
|
%% the idea is all your descriptors are in individual folders - within
|
||||||
%% the folder specified as 'OUT_FOLDER'.
|
%% the folder specified as 'OUT_FOLDER'.
|
||||||
OUT_SUBFOLDER='avgRGB';
|
% OUT_SUBFOLDER='avgRGB';
|
||||||
% OUT_SUBFOLDER='globalRGBhisto';
|
% OUT_SUBFOLDER='globalRGBhisto';
|
||||||
% OUT_SUBFOLDER='spatialColour';
|
% OUT_SUBFOLDER='spatialColour';
|
||||||
% OUT_SUBFOLDER='spatialColourTexture';
|
OUT_SUBFOLDER='spatialColourTexture';
|
||||||
|
|
||||||
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
||||||
for filenum=1:length(allfiles)
|
for filenum=1:length(allfiles)
|
||||||
@ -37,10 +37,10 @@ for filenum=1:length(allfiles)
|
|||||||
fout=[OUT_FOLDER,'/',OUT_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
fout=[OUT_FOLDER,'/',OUT_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
||||||
|
|
||||||
%% EXTRACT FUNCTION
|
%% EXTRACT FUNCTION
|
||||||
F=extractAvgRGB(img);
|
% F=extractAvgRGB(img);
|
||||||
% F=extractGlobalColHist(img);
|
% F=extractGlobalColHist(img);
|
||||||
% F=extractSpatialColour(img);
|
% F=extractSpatialColour(img);
|
||||||
% F=extractSpatialColourTexture(img);
|
F=extractSpatialColourTexture(img);
|
||||||
save(fout,'F');
|
save(fout,'F');
|
||||||
toc
|
toc
|
||||||
end
|
end
|
||||||
|
@ -27,10 +27,10 @@ DATASET_FOLDER = 'dataset';
|
|||||||
DESCRIPTOR_FOLDER = 'descriptors';
|
DESCRIPTOR_FOLDER = 'descriptors';
|
||||||
%% and within that folder, another folder to hold the descriptors
|
%% and within that folder, another folder to hold the descriptors
|
||||||
%% we are interested in working with
|
%% we are interested in working with
|
||||||
DESCRIPTOR_SUBFOLDER='avgRGB';
|
% DESCRIPTOR_SUBFOLDER='avgRGB';
|
||||||
% DESCRIPTOR_SUBFOLDER='globalRGBhisto';
|
% DESCRIPTOR_SUBFOLDER='globalRGBhisto';
|
||||||
% DESCRIPTOR_SUBFOLDER='spatialColour';
|
% DESCRIPTOR_SUBFOLDER='spatialColour';
|
||||||
% DESCRIPTOR_SUBFOLDER='spatialColourTexture';
|
DESCRIPTOR_SUBFOLDER='spatialColourTexture';
|
||||||
|
|
||||||
CATEGORIES = ["Farm Animal"
|
CATEGORIES = ["Farm Animal"
|
||||||
"Tree"
|
"Tree"
|
||||||
@ -95,23 +95,17 @@ for iterating_category=1:CAT_TOTAL
|
|||||||
%% 2) Select descriptors for category and training data
|
%% 2) Select descriptors for category and training data
|
||||||
category_training_descriptors = [];
|
category_training_descriptors = [];
|
||||||
test_descriptors = [];
|
test_descriptors = [];
|
||||||
|
test_categories = [];
|
||||||
for i=1:NIMG
|
for i=1:NIMG
|
||||||
if iterating_category == ALLCATs(i)
|
if (iterating_category == ALLCATs(i)) && (size(category_training_descriptors,1) < MODEL_SIZE)
|
||||||
category_training_descriptors = [ category_training_descriptors ; ALLFEAT(i,:) ];
|
category_training_descriptors = [ category_training_descriptors ; ALLFEAT(i,:) ];
|
||||||
else
|
else
|
||||||
test_descriptors = [ test_descriptors ; ALLFEAT(i,:) ];
|
test_descriptors = [ test_descriptors ; ALLFEAT(i,:) ];
|
||||||
|
test_categories = [ test_categories ; ALLCATs(i) ];
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
model_descriptors = category_training_descriptors(1:MODEL_SIZE, :);
|
[eig_vct, eig_val, model_mean] = getEigenModel(category_training_descriptors);
|
||||||
|
|
||||||
model_mean = mean(model_descriptors);
|
|
||||||
model_data_min_mean = model_descriptors - repmat(model_mean, MODEL_SIZE, 1);
|
|
||||||
|
|
||||||
C = (model_data_min_mean' * model_data_min_mean) ./ MODEL_SIZE;
|
|
||||||
|
|
||||||
[eig_vct, eig_val] = eig(C);
|
|
||||||
|
|
||||||
|
|
||||||
TEST_SIZE = size(test_descriptors,1);
|
TEST_SIZE = size(test_descriptors,1);
|
||||||
|
|
||||||
@ -119,21 +113,19 @@ for iterating_category=1:CAT_TOTAL
|
|||||||
dst=[];
|
dst=[];
|
||||||
for i=1:TEST_SIZE
|
for i=1:TEST_SIZE
|
||||||
candidate=test_descriptors(i,:);
|
candidate=test_descriptors(i,:);
|
||||||
query=ALLFEAT(queryimg,:);
|
category=test_categories(i);
|
||||||
|
|
||||||
category=ALLCATs(i);
|
|
||||||
|
|
||||||
%% COMPARE FUNCTION
|
%% COMPARE FUNCTION
|
||||||
thedst=compareEuclidean(query, candidate);
|
thedst=compareMahalanobis(eig_vct, eig_val, model_mean, candidate);
|
||||||
dst=[dst ; [thedst i category]];
|
dst=[dst ; [thedst i category]];
|
||||||
end
|
end
|
||||||
dst=sortrows(dst,1); % sort the results
|
dst=sortrows(dst,1); % sort the results
|
||||||
|
|
||||||
%% 4) Calculate PR
|
%% 4) Calculate PR
|
||||||
precision_values=zeros([1, NIMG]);
|
precision_values=zeros([1, TEST_SIZE]);
|
||||||
recall_values=zeros([1, NIMG]);
|
recall_values=zeros([1, TEST_SIZE]);
|
||||||
|
|
||||||
correct_at_n=zeros([1, NIMG]);
|
correct_at_n=zeros([1, TEST_SIZE]);
|
||||||
|
|
||||||
query_row = dst(1,:);
|
query_row = dst(1,:);
|
||||||
query_category = query_row(1,3);
|
query_category = query_row(1,3);
|
||||||
@ -141,7 +133,7 @@ for iterating_category=1:CAT_TOTAL
|
|||||||
|
|
||||||
|
|
||||||
%calculate PR for each n
|
%calculate PR for each n
|
||||||
for i=1:NIMG
|
for i=1:TEST_SIZE
|
||||||
|
|
||||||
rows = dst(1:i, :);
|
rows = dst(1:i, :);
|
||||||
|
|
||||||
@ -182,8 +174,8 @@ for iterating_category=1:CAT_TOTAL
|
|||||||
|
|
||||||
|
|
||||||
%% 5) calculate AP
|
%% 5) calculate AP
|
||||||
P_rel_n = zeros([1, NIMG]);
|
P_rel_n = zeros([1, TEST_SIZE]);
|
||||||
for i = 1:NIMG
|
for i = 1:TEST_SIZE
|
||||||
precision = precision_values(i);
|
precision = precision_values(i);
|
||||||
i_result_relevant = correct_at_n(i);
|
i_result_relevant = correct_at_n(i);
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
function F=extractSpatialColourTexture(img)
|
function F=extractSpatialColourTexture(img)
|
||||||
|
|
||||||
grid_rows = 10;
|
grid_rows = 4;
|
||||||
grid_columns = 10;
|
grid_columns = 4;
|
||||||
|
|
||||||
img_size = size(img);
|
img_size = size(img);
|
||||||
img_rows = img_size(1);
|
img_rows = img_size(1);
|
||||||
@ -43,7 +43,7 @@ for i = 1:grid_rows
|
|||||||
avg_vals = extractAvgRGB(img_cell);
|
avg_vals = extractAvgRGB(img_cell);
|
||||||
[mag_img, angle_img] = getEdgeInfo(grey_img_cell);
|
[mag_img, angle_img] = getEdgeInfo(grey_img_cell);
|
||||||
|
|
||||||
edge_hist = getEdgeAngleHist(mag_img, angle_img);
|
edge_hist = getEdgeAngleHist(mag_img, angle_img, 6, 0.05);
|
||||||
|
|
||||||
%concatenate average values into vector
|
%concatenate average values into vector
|
||||||
descriptor = [descriptor edge_hist avg_vals(1) avg_vals(2) avg_vals(3)];
|
descriptor = [descriptor edge_hist avg_vals(1) avg_vals(2) avg_vals(3)];
|
||||||
|
11
distance/compareMahalanobis.m
Normal file
11
distance/compareMahalanobis.m
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
function dst=compareMahalanobis(vct, val, mean, F2)
|
||||||
|
|
||||||
|
x_minus_mean = (F2 - mean)';
|
||||||
|
matrices = val' * vct' * x_minus_mean;
|
||||||
|
|
||||||
|
x=matrices.^2;
|
||||||
|
x=sum(x);
|
||||||
|
|
||||||
|
dst=sqrt(sqrt(x));
|
||||||
|
|
||||||
|
return;
|
@ -1,7 +1,4 @@
|
|||||||
function F=getEdgeAngleHist(mag_img, angle_img)
|
function F=getEdgeAngleHist(mag_img, angle_img, bins, threshold)
|
||||||
|
|
||||||
bins = 8;
|
|
||||||
threshold = 0.05;
|
|
||||||
|
|
||||||
dimensions = size(angle_img);
|
dimensions = size(angle_img);
|
||||||
rows = dimensions(1);
|
rows = dimensions(1);
|
||||||
@ -13,7 +10,7 @@ for i = 1:rows
|
|||||||
if mag_img(i, j) > threshold
|
if mag_img(i, j) > threshold
|
||||||
|
|
||||||
bin_value = angle_img(i, j) / (2 * pi);
|
bin_value = angle_img(i, j) / (2 * pi);
|
||||||
bin_value = bin_value * bins;
|
bin_value = floor(bin_value * bins);
|
||||||
|
|
||||||
vals = [vals bin_value];
|
vals = [vals bin_value];
|
||||||
|
|
||||||
@ -21,5 +18,9 @@ for i = 1:rows
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
if size(vals, 2) == 0
|
||||||
|
F = zeros(1, bins)
|
||||||
|
else
|
||||||
F= histogram(vals, bins, 'Normalization', 'probability').Values;
|
F= histogram(vals, bins, 'Normalization', 'probability').Values;
|
||||||
|
end
|
||||||
return;
|
return;
|
12
util/getEigenModel.m
Normal file
12
util/getEigenModel.m
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
function [eig_vct, eig_val, model_mean]=getEigenModel(model_descriptors)
|
||||||
|
|
||||||
|
model_size = size(model_descriptors, 1);
|
||||||
|
|
||||||
|
model_mean = mean(model_descriptors);
|
||||||
|
model_data_min_mean = model_descriptors - repmat(model_mean, model_size, 1);
|
||||||
|
|
||||||
|
C = (model_data_min_mean' * model_data_min_mean) ./ model_size;
|
||||||
|
|
||||||
|
[eig_vct, eig_val] = eig(C);
|
||||||
|
|
||||||
|
return;
|
Loading…
Reference in New Issue
Block a user