done?
19
README.txt
Normal file
@ -0,0 +1,19 @@
|
||||
|
||||
/data - pulled images and spreadsheet of data
|
||||
/descriptor - functions for extracting descriptors
|
||||
/distance - functions fo measuring distance between descriptors
|
||||
/util - util functions such as toGreyscale and EVD
|
||||
|
||||
There are two types of script, ones that run a category response once (cvpr_visualsearch_*) and ones that iteratively
|
||||
generate new descriptors to run queries on (parameter_*)
|
||||
|
||||
_query_set operates using either L1 or L2 norm on the query set
|
||||
_pca generates an eigenmodel from the descriptors and computes mahalanobis distance
|
||||
_rand_image picks a random query image from each category to iterate over, no results from this script are in the paper
|
||||
|
||||
|
||||
The cvpr_visualsearch_* scripts load descriptors from folders and perform a category response test on them.
|
||||
|
||||
The parameter_* scripts were used to generate iterative parameter results for descriptors.
|
||||
Effectively the query code from the cvpr_visualsearch_* files have been prefaced with descriptor generators that as a whole
|
||||
iterate over parameters instead of loading them from files.
|
@ -23,10 +23,10 @@ OUT_FOLDER = 'descriptors';
|
||||
%% the idea is all your descriptors are in individual folders - within
|
||||
%% the folder specified as 'OUT_FOLDER'.
|
||||
% OUT_SUBFOLDER='avgRGB';
|
||||
% OUT_SUBFOLDER='globalRGBhisto';
|
||||
OUT_SUBFOLDER='globalRGBhisto';
|
||||
% OUT_SUBFOLDER='spatialColour';
|
||||
% OUT_SUBFOLDER='spatialTexture';
|
||||
OUT_SUBFOLDER='spatialColourTexture';
|
||||
% OUT_SUBFOLDER='spatialColourTexture';
|
||||
|
||||
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
||||
for filenum=1:length(allfiles)
|
||||
@ -39,10 +39,10 @@ for filenum=1:length(allfiles)
|
||||
|
||||
%% EXTRACT FUNCTION
|
||||
% F=extractAvgRGB(img);
|
||||
% F=extractGlobalColHist(img, 2, 1, 8, 0.05);
|
||||
% F=extractSpatialColour(img, 14, 4);
|
||||
F=extractGlobalColHist(img, 5);
|
||||
% F=extractSpatialColour(img, 4, 4);
|
||||
% F=extractSpatialTexture(img, 4, 4, 7, 0.09);
|
||||
F=extractSpatialColourTexture(img, 4, 4, 7, 0.09);
|
||||
% F=extractSpatialColourTexture(img, 4, 4, 7, 0.09);
|
||||
save(fout,'F');
|
||||
toc
|
||||
end
|
||||
|
263
cvpr_visualsearch_pca.m
Normal file
@ -0,0 +1,263 @@
|
||||
%% EEE3032 - Computer Vision and Pattern Recognition (ee3.cvpr)
|
||||
%%
|
||||
%% cvpr_visualsearch.m
|
||||
%% Skeleton code provided as part of the coursework assessment
|
||||
%%
|
||||
%% This code will load in all descriptors pre-computed (by the
|
||||
%% function cvpr_computedescriptors) from the images in the MSRCv2 dataset.
|
||||
%%
|
||||
%% It will pick a descriptor at random and compare all other descriptors to
|
||||
%% it - by calling cvpr_compare. In doing so it will rank the images by
|
||||
%% similarity to the randomly picked descriptor. Note that initially the
|
||||
%% function cvpr_compare returns a random number - you need to code it
|
||||
%% so that it returns the Euclidean distance or some other distance metric
|
||||
%% between the two descriptors it is passed.
|
||||
%%
|
||||
%% (c) John Collomosse 2010 (J.Collomosse@surrey.ac.uk)
|
||||
%% Centre for Vision Speech and Signal Processing (CVSSP)
|
||||
%% University of Surrey, United Kingdom
|
||||
|
||||
close all;
|
||||
clear all;
|
||||
|
||||
%% Edit the following line to the folder you unzipped the MSRCv2 dataset to
|
||||
DATASET_FOLDER = 'dataset';
|
||||
|
||||
%% Folder that holds the results...
|
||||
DESCRIPTOR_FOLDER = 'descriptors';
|
||||
%% and within that folder, another folder to hold the descriptors
|
||||
%% we are interested in working with
|
||||
% DESCRIPTOR_SUBFOLDER='avgRGB';
|
||||
DESCRIPTOR_SUBFOLDER='globalRGBhisto';
|
||||
% DESCRIPTOR_SUBFOLDER='spatialColour';
|
||||
% DESCRIPTOR_SUBFOLDER='spatialTexture';
|
||||
% DESCRIPTOR_SUBFOLDER='spatialColourTexture';
|
||||
|
||||
CATEGORIES = ["Farm Animal"
|
||||
"Tree"
|
||||
"Building"
|
||||
"Plane"
|
||||
"Cow"
|
||||
"Face"
|
||||
"Car"
|
||||
"Bike"
|
||||
"Sheep"
|
||||
"Flower"
|
||||
"Sign"
|
||||
"Bird"
|
||||
"Book Shelf"
|
||||
"Bench"
|
||||
"Cat"
|
||||
"Dog"
|
||||
"Road"
|
||||
"Water Features"
|
||||
"Human Figures"
|
||||
"Coast"
|
||||
];
|
||||
|
||||
QUERY_INDEXES=[301 358 384 436 447 476 509 537 572 5 61 80 97 127 179 181 217 266 276 333];
|
||||
|
||||
% 1_10 2_16 3_12 4_4 5_15 6_14 7_17 8_15 9_1 10_14 11_8 12_26 13_10 14_10
|
||||
% 15_8 16_10 17_16 18_5 19_15 20_12
|
||||
|
||||
|
||||
%% 1) Load all the descriptors into "ALLFEAT"
|
||||
%% each row of ALLFEAT is a descriptor (is an image)
|
||||
|
||||
ALLFEAT=[];
|
||||
ALLFILES=cell(1,0);
|
||||
ALLCATs=[];
|
||||
ctr=1;
|
||||
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
||||
for filenum=1:length(allfiles)
|
||||
fname=allfiles(filenum).name;
|
||||
|
||||
%identify photo category for PR calculation
|
||||
split_string = split(fname, '_');
|
||||
ALLCATs(filenum) = str2double(split_string(1));
|
||||
|
||||
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
|
||||
img=double(imread(imgfname_full))./255;
|
||||
thesefeat=[];
|
||||
featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
||||
load(featfile,'F');
|
||||
ALLFILES{ctr}=imgfname_full;
|
||||
ALLFEAT=[ALLFEAT ; F];
|
||||
ctr=ctr+1;
|
||||
end
|
||||
|
||||
% get counts for each category for PR calculation
|
||||
CAT_HIST = histogram(ALLCATs).Values;
|
||||
CAT_TOTAL = length(CAT_HIST);
|
||||
|
||||
NIMG=size(ALLFEAT,1); % number of images in collection
|
||||
|
||||
descriptor_list = ALLFEAT;
|
||||
|
||||
confusion_matrix = zeros(CAT_TOTAL);
|
||||
|
||||
all_precision = [];
|
||||
all_recall = [];
|
||||
|
||||
AP_values = zeros([1, CAT_TOTAL]);
|
||||
for iteration=1:CAT_TOTAL
|
||||
|
||||
%% 2) Pick an image at random to be the query
|
||||
queryimg=QUERY_INDEXES(iteration); % index of a random image
|
||||
|
||||
%% 3) Compute EigenModel
|
||||
E = getEigenModel(descriptor_list);
|
||||
E = deflateEigen(E, 0.986);
|
||||
|
||||
%% 4) Project data to lower dimensionality
|
||||
descriptor_list=descriptor_list-repmat(E.org,size(descriptor_list,1),1);
|
||||
descriptor_list=((E.vct')*(descriptor_list'))';
|
||||
|
||||
%% 5) Compute the distance of image to the query
|
||||
dst=[];
|
||||
for i=1:NIMG
|
||||
candidate=descriptor_list(i,:);
|
||||
query=descriptor_list(queryimg,:);
|
||||
|
||||
category=ALLCATs(i);
|
||||
|
||||
%% COMPARE FUNCTION
|
||||
thedst=compareMahalanobis(E, query, candidate);
|
||||
dst=[dst ; [thedst i category]];
|
||||
end
|
||||
dst=sortrows(dst,1); % sort the results
|
||||
|
||||
%% 6) Calculate PR
|
||||
precision_values=zeros([1, NIMG-1]);
|
||||
recall_values=zeros([1, NIMG-1]);
|
||||
|
||||
correct_at_n=zeros([1, NIMG-1]);
|
||||
|
||||
query_row = dst(1,:);
|
||||
query_category = query_row(1,3);
|
||||
% if query_category ~= iteration
|
||||
% dst
|
||||
% end
|
||||
fprintf('category was %s\n', CATEGORIES(query_category))
|
||||
|
||||
dst = dst(2:NIMG, :);
|
||||
|
||||
%calculate PR for each n
|
||||
for i=1:size(dst, 1)
|
||||
% NIMG-1 and j iterator variable is in order to skip calculating for query image
|
||||
|
||||
rows = dst(1:i, :);
|
||||
|
||||
correct_results = 0;
|
||||
incorrect_results = 0;
|
||||
|
||||
if i > 1
|
||||
for n=1:i - 1
|
||||
row = rows(n, :);
|
||||
category = row(3);
|
||||
|
||||
if category == iteration
|
||||
correct_results = correct_results + 1;
|
||||
else
|
||||
incorrect_results = incorrect_results + 1;
|
||||
end
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
% LAST ROW
|
||||
row = rows(i, :);
|
||||
category = row(3);
|
||||
|
||||
if category == iteration
|
||||
correct_results = correct_results + 1;
|
||||
correct_at_n(i) = 1;
|
||||
else
|
||||
incorrect_results = incorrect_results + 1;
|
||||
end
|
||||
|
||||
precision = correct_results / i;
|
||||
recall = correct_results / (CAT_HIST(1,iteration) - 1);
|
||||
|
||||
precision_values(i) = precision;
|
||||
recall_values(i) = recall;
|
||||
end
|
||||
|
||||
|
||||
%% 7) calculate AP
|
||||
average_precision = sum(precision_values .* correct_at_n) / CAT_HIST(1,iteration);
|
||||
AP_values(iteration) = average_precision;
|
||||
|
||||
|
||||
all_precision = [all_precision ; precision_values];
|
||||
all_recall = [all_recall ; recall_values];
|
||||
|
||||
|
||||
%% 6) plot cumulative PR curve
|
||||
% figure(1)
|
||||
% plot(recall_values, precision_values,'LineWidth',1.5);
|
||||
% hold on;
|
||||
% title('PR Curve');
|
||||
% xlabel('Recall');
|
||||
% ylabel('Precision');
|
||||
% xlim([0 1]);
|
||||
% ylim([0 1]);
|
||||
|
||||
|
||||
%% 8) Visualise the results and Populate confusion matrix
|
||||
%% These may be a little hard to see using imgshow
|
||||
%% If you have access, try using imshow(outdisplay) or imagesc(outdisplay)
|
||||
|
||||
SHOW=25; % Show top 25 results
|
||||
dst=dst(1:SHOW,:);
|
||||
outdisplay=[];
|
||||
for i=1:size(dst,1)
|
||||
img=imread(ALLFILES{dst(i,2)});
|
||||
img=img(1:2:end,1:2:end,:); % make image a quarter size
|
||||
img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights)
|
||||
outdisplay=[outdisplay img];
|
||||
|
||||
%populate confusion matrix
|
||||
confusion_matrix(dst(i,3), iteration) = confusion_matrix(dst(i,3), iteration) + 1;
|
||||
end
|
||||
% figure(3)
|
||||
% imgshow(outdisplay);
|
||||
% axis off;
|
||||
|
||||
end
|
||||
|
||||
%% 9) Plot average PR curve
|
||||
figure(4)
|
||||
mean_precision = mean(all_precision);
|
||||
mean_recall = mean(all_recall);
|
||||
plot(mean_recall, mean_precision,'LineWidth',5);
|
||||
title('Spatial Colour and Texture Average PR with PCA (4x3, 7 bins, thresh. 0.09)');
|
||||
xlabel('Average Recall');
|
||||
ylabel('Average Precision');
|
||||
xlim([0 1]);
|
||||
ylim([0 1]);
|
||||
|
||||
%% 11) normalise confusion matrix
|
||||
figure(5)
|
||||
norm_confusion_matrix = confusion_matrix ./ sum(confusion_matrix, 'all');
|
||||
cm = confusionchart(confusion_matrix, CATEGORIES, 'Normalization', 'column-normalized');
|
||||
cm.Title = 'Spatial Colour and Texture Confusion Matrix with PCA (4x3, 7 bins, thresh. 0.09)';
|
||||
xlabel('Query Classification');
|
||||
ylabel('Ground Truth');
|
||||
|
||||
%% 12) Calculate MAP
|
||||
% figure(4)
|
||||
% histogram(AP_values);
|
||||
% title('Average Precision Distribution');
|
||||
% ylabel('Count');
|
||||
% xlabel('Average Precision');
|
||||
% xlim([0, 1]);
|
||||
|
||||
MAP = mean(AP_values)
|
||||
AP_sd = std(AP_values);
|
||||
|
||||
% figure(2)
|
||||
% plot(1:CAT_TOTAL, AP_values);
|
||||
% title('Average Precision Per Run');
|
||||
% xlabel('Run');
|
||||
% ylabel('Average Precision');
|
@ -112,7 +112,7 @@ for iteration=1:CAT_TOTAL
|
||||
category=ALLCATs(i);
|
||||
|
||||
%% COMPARE FUNCTION
|
||||
thedst=compareEuclidean(query, candidate);
|
||||
thedst=compareL1(query, candidate);
|
||||
dst=[dst ; [thedst i category]];
|
||||
end
|
||||
dst=sortrows(dst,1); % sort the results
|
||||
@ -208,7 +208,7 @@ for iteration=1:CAT_TOTAL
|
||||
outdisplay=[outdisplay img];
|
||||
|
||||
%populate confusion matrix
|
||||
confusion_matrix(query_category, dst(i,3)) = confusion_matrix(query_category, dst(i,3)) + 1;
|
||||
confusion_matrix(dst(i,3), iteration) = confusion_matrix(dst(i,3), iteration) + 1;
|
||||
end
|
||||
% figure(3)
|
||||
% imgshow(outdisplay);
|
||||
@ -221,14 +221,19 @@ figure(4)
|
||||
mean_precision = mean(all_precision);
|
||||
mean_recall = mean(all_recall);
|
||||
plot(mean_recall, mean_precision,'LineWidth',5);
|
||||
title('Spatial Texture Average PR (4x4, bin=7, thresh.=0.09)');
|
||||
title('Spatial Colour and Texture Average PR (4x3, 7 bins, thresh. 0.09)');
|
||||
xlabel('Average Recall');
|
||||
ylabel('Average Precision');
|
||||
xlim([0 1]);
|
||||
ylim([0 1]);
|
||||
|
||||
% normalise confusion matrix
|
||||
figure(5)
|
||||
norm_confusion_matrix = confusion_matrix ./ sum(confusion_matrix, 'all');
|
||||
cm = confusionchart(confusion_matrix, CATEGORIES, 'Normalization', 'column-normalized');
|
||||
cm.Title = 'Global Colour Histogram Confusion Matrix, 5 bins';
|
||||
xlabel('Query Classification');
|
||||
ylabel('Ground Truth');
|
||||
|
||||
%% 8 Calculate MAP
|
||||
% figure(4)
|
BIN
data/10_15_s.png
Normal file
After Width: | Height: | Size: 119 KiB |
BIN
data/9_21_s.png
Normal file
After Width: | Height: | Size: 150 KiB |
BIN
data/MAPComparison.png
Normal file
After Width: | Height: | Size: 31 KiB |
BIN
data/PCA/colour-texture-4x3-7-0.09-deflation-100.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
data/PCA/colour-texture-4x3-7-0.09-deflation-20.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
data/PCA/colour-texture-avg-pr-4-3-7-0.09-1.4.png
Normal file
After Width: | Height: | Size: 48 KiB |
BIN
data/PCA/colour-texture-cm-4x3-7-0.09-1.4.jpg
Normal file
After Width: | Height: | Size: 208 KiB |
BIN
data/colourHistogram/cm-5.jpg
Normal file
After Width: | Height: | Size: 218 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 49 KiB |
BIN
data/data.ods
BIN
data/spatialColourTexture/avg-pr-4-3-7-0.09.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
data/spatialColourTexture/avg-pr-4-4-7-0.09.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
data/spatialColourTexture/cm-4x3-7-0.09.jpg
Normal file
After Width: | Height: | Size: 212 KiB |
BIN
data/spatialTexture/avg-pr-4-3-7-0.09.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
data/spatialTexture/cm-4x3-7-0.09.jpg
Normal file
After Width: | Height: | Size: 209 KiB |
@ -1,6 +1,4 @@
|
||||
function F=extractGlobalColHist(img)
|
||||
|
||||
divs = 5;
|
||||
function F=extractGlobalColHist(img, divs)
|
||||
|
||||
qimg = floor(img .* divs);
|
||||
bin = qimg(:,:,1) * divs^2 + qimg(:,:,2) * divs^1 + qimg(:,:,3);
|
||||
|
@ -25,13 +25,6 @@ DATASET_FOLDER = 'dataset';
|
||||
|
||||
%% Folder that holds the results...
|
||||
DESCRIPTOR_FOLDER = 'descriptors';
|
||||
%% and within that folder, another folder to hold the descriptors
|
||||
%% we are interested in working with
|
||||
% DESCRIPTOR_SUBFOLDER='avgRGB';
|
||||
% DESCRIPTOR_SUBFOLDER='globalRGBhisto';
|
||||
% DESCRIPTOR_SUBFOLDER='spatialColour';
|
||||
% DESCRIPTOR_SUBFOLDER='spatialTexture';
|
||||
DESCRIPTOR_SUBFOLDER='spatialColourTexture';
|
||||
|
||||
CATEGORIES = ["Farm Animal"
|
||||
"Tree"
|
||||
@ -60,6 +53,9 @@ QUERY_INDEXES=[301 358 384 436 447 476 509 537 572 5 61 80 97 127 179 181 217 26
|
||||
% 1_10 2_16 3_12 4_4 5_15 6_14 7_17 8_15 9_1 10_14 11_8 12_26 13_10 14_10
|
||||
% 15_8 16_10 17_16 18_5 19_15 20_12
|
||||
|
||||
map=[];
|
||||
deflate_energy = [0:0.001:0.2];
|
||||
for var_iter=28:28%size(deflate_energy, 2)
|
||||
|
||||
%% 1) Load all the descriptors into "ALLFEAT"
|
||||
%% each row of ALLFEAT is a descriptor (is an image)
|
||||
@ -68,22 +64,45 @@ ALLFEAT=[];
|
||||
ALLFILES=cell(1,0);
|
||||
ALLCATs=[];
|
||||
ctr=1;
|
||||
% allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
||||
% for filenum=1:length(allfiles)
|
||||
% fname=allfiles(filenum).name;
|
||||
%
|
||||
% %identify photo category for PR calculation
|
||||
% split_string = split(fname, '_');
|
||||
% ALLCATs(filenum) = str2double(split_string(1));
|
||||
%
|
||||
% imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
|
||||
% img=double(imread(imgfname_full))./255;
|
||||
% thesefeat=[];
|
||||
% featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
||||
% load(featfile,'F');
|
||||
% ALLFILES{ctr}=imgfname_full;
|
||||
% ALLFEAT=[ALLFEAT ; F];
|
||||
% ctr=ctr+1;
|
||||
% end
|
||||
|
||||
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
|
||||
for filenum=1:length(allfiles)
|
||||
fname=allfiles(filenum).name;
|
||||
% fprintf('Processing file %d/%d - %s\n',filenum,length(allfiles),fname);
|
||||
% tic;
|
||||
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
|
||||
img=double(imread(imgfname_full))./255;
|
||||
|
||||
%identify photo category for PR calculation
|
||||
split_string = split(fname, '_');
|
||||
ALLCATs(filenum) = str2double(split_string(1));
|
||||
|
||||
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
|
||||
img=double(imread(imgfname_full))./255;
|
||||
thesefeat=[];
|
||||
featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
|
||||
load(featfile,'F');
|
||||
ALLFILES{ctr}=imgfname_full;
|
||||
%% EXTRACT FUNCTION
|
||||
% F=extractAvgRGB(img);
|
||||
F=extractGlobalColHist(img, var_iter);
|
||||
% F=extractSpatialColour(img, r, c);
|
||||
% F=extractSpatialTexture(img, r, c, 7, 0.09);
|
||||
% F=extractSpatialColourTexture(img, r, c, 7, 0.09);
|
||||
% toc
|
||||
|
||||
ALLFEAT=[ALLFEAT ; F];
|
||||
ctr=ctr+1;
|
||||
end
|
||||
|
||||
% get counts for each category for PR calculation
|
||||
@ -92,12 +111,6 @@ CAT_TOTAL = length(CAT_HIST);
|
||||
|
||||
NIMG=size(ALLFEAT,1); % number of images in collection
|
||||
|
||||
|
||||
|
||||
map=[];
|
||||
deflate_energy = [0:0.001:0.3];
|
||||
for var_iter=1:size(deflate_energy, 2)
|
||||
|
||||
descriptor_list = ALLFEAT;
|
||||
|
||||
confusion_matrix = zeros(CAT_TOTAL);
|
||||
@ -113,7 +126,7 @@ for iteration=1:CAT_TOTAL
|
||||
|
||||
%% 3) Compute EigenModel
|
||||
E = getEigenModel(descriptor_list);
|
||||
E = deflateEigen(E, 1-deflate_energy(var_iter));
|
||||
E = deflateEigen(E, 0.986);
|
||||
|
||||
%% 4) Project data to lower dimensionality
|
||||
descriptor_list=descriptor_list-repmat(E.org,size(descriptor_list,1),1);
|
||||
@ -218,13 +231,13 @@ for iteration=1:CAT_TOTAL
|
||||
% dst=dst(1:SHOW,:);
|
||||
% outdisplay=[];
|
||||
% for i=1:size(dst,1)
|
||||
% img=imread(ALLFILES{dst(i,2)});
|
||||
% img=img(1:2:end,1:2:end,:); % make image a quarter size
|
||||
% img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights)
|
||||
% outdisplay=[outdisplay img];
|
||||
% % img=imread(ALLFILES{dst(i,2)});
|
||||
% % img=img(1:2:end,1:2:end,:); % make image a quarter size
|
||||
% % img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights)
|
||||
% % outdisplay=[outdisplay img];
|
||||
%
|
||||
% %populate confusion matrix
|
||||
% confusion_matrix(query_category, dst(i,3)) = confusion_matrix(query_category, dst(i,3)) + 1;
|
||||
% confusion_matrix(dst(i,3), iteration) = confusion_matrix(dst(i,3), iteration) + 1;
|
||||
% end
|
||||
% figure(3)
|
||||
% imgshow(outdisplay);
|
@ -55,8 +55,8 @@ QUERY_INDEXES=[301 358 384 436 447 476 509 537 572 5 61 80 97 127 179 181 217 26
|
||||
|
||||
map = [];
|
||||
|
||||
for r=9:9
|
||||
for c=1:8
|
||||
for r=39:45
|
||||
% for c=1:8
|
||||
|
||||
%% 1) Load all the descriptors into "ALLFEAT"
|
||||
%% each row of ALLFEAT is a descriptor (is an image)
|
||||
@ -79,9 +79,9 @@ for filenum=1:length(allfiles)
|
||||
|
||||
%% EXTRACT FUNCTION
|
||||
% F=extractAvgRGB(img);
|
||||
% F=extractGlobalColHist(img);
|
||||
F=extractGlobalColHist(img, r);
|
||||
% F=extractSpatialColour(img, r, c);
|
||||
F=extractSpatialTexture(img, r, c, 7, 0.09);
|
||||
% F=extractSpatialTexture(img, r, c, 7, 0.09);
|
||||
% F=extractSpatialColourTexture(img, r, c, 7, 0.09);
|
||||
% toc
|
||||
|
||||
@ -114,7 +114,7 @@ for iteration=1:CAT_TOTAL
|
||||
category=ALLCATs(i);
|
||||
|
||||
%% COMPARE FUNCTION
|
||||
thedst=compareEuclidean(query, candidate);
|
||||
thedst=compareL1(query, candidate);
|
||||
dst=[dst ; [thedst i category]];
|
||||
end
|
||||
dst=sortrows(dst,1); % sort the results
|
||||
@ -249,11 +249,11 @@ MAP = mean(AP_values);
|
||||
% xlabel('Run');
|
||||
% ylabel('Average Precision');
|
||||
|
||||
fprintf('%i,%i %i\n', r, c, MAP);
|
||||
% fprintf('%i,%i\n', r, MAP);
|
||||
% fprintf('%i,%i %i\n', r, c, MAP);
|
||||
fprintf('%i,%i\n', r, MAP);
|
||||
|
||||
map(r, c) = MAP;
|
||||
% map(b) = MAP;
|
||||
% map(r, c) = MAP;
|
||||
map(r) = MAP;
|
||||
|
||||
end
|
||||
% end
|
||||
end
|