visual-search/cvpr_visualsearch.m

218 lines
5.9 KiB
Mathematica
Raw Normal View History

%% EEE3032 - Computer Vision and Pattern Recognition (ee3.cvpr)
%%
%% cvpr_visualsearch.m
%% Skeleton code provided as part of the coursework assessment
%%
%% This code will load in all descriptors pre-computed (by the
%% function cvpr_computedescriptors) from the images in the MSRCv2 dataset.
%%
%% It will pick a descriptor at random and compare all other descriptors to
%% it - by calling cvpr_compare. In doing so it will rank the images by
%% similarity to the randomly picked descriptor. Note that initially the
%% function cvpr_compare returns a random number - you need to code it
%% so that it returns the Euclidean distance or some other distance metric
%% between the two descriptors it is passed.
%%
%% (c) John Collomosse 2010 (J.Collomosse@surrey.ac.uk)
%% Centre for Vision Speech and Signal Processing (CVSSP)
%% University of Surrey, United Kingdom
close all;
clear all;
%% Edit the following line to the folder you unzipped the MSRCv2 dataset to
DATASET_FOLDER = 'dataset';
%% Folder that holds the results...
DESCRIPTOR_FOLDER = 'descriptors';
%% and within that folder, another folder to hold the descriptors
%% we are interested in working with
DESCRIPTOR_SUBFOLDER='avgRGB';
% DESCRIPTOR_SUBFOLDER='globalRGBhisto';
% DESCRIPTOR_SUBFOLDER='spatialColour';
% DESCRIPTOR_SUBFOLDER='spatialColourTexture';
CATEGORIES = ["Farm Animal"
"Tree"
"Building"
"Plane"
"Cow"
"Face"
"Car"
"Bike"
"Sheep"
"Flower"
"Sign"
"Bird"
"Book Shelf"
"Bench"
"Cat"
"Dog"
"Road"
"Water Features"
"Human Figures"
"Coast"
];
%% 1) Load all the descriptors into "ALLFEAT"
%% each row of ALLFEAT is a descriptor (is an image)
ALLFEAT=[];
ALLFILES=cell(1,0);
2019-11-07 16:36:30 +00:00
ALLCATs=[];
ctr=1;
allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp']));
for filenum=1:length(allfiles)
fname=allfiles(filenum).name;
2019-11-07 16:36:30 +00:00
%identify photo category for PR calculation
split_string = split(fname, '_');
ALLCATs(filenum) = str2double(split_string(1));
imgfname_full=([DATASET_FOLDER,'/Images/',fname]);
img=double(imread(imgfname_full))./255;
thesefeat=[];
featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat
load(featfile,'F');
ALLFILES{ctr}=imgfname_full;
ALLFEAT=[ALLFEAT ; F];
ctr=ctr+1;
end
2019-11-07 16:36:30 +00:00
% get counts for each category for PR calculation
CAT_HIST = histogram(ALLCATs).Values;
CAT_TOTAL = length(CAT_HIST);
2019-11-07 16:36:30 +00:00
run_total = 50;
2019-11-08 11:51:33 +00:00
AP_values = zeros([1, run_total]);
for run=1:run_total
%% 2) Pick an image at random to be the query
NIMG=size(ALLFEAT,1); % number of images in collection
queryimg=floor(rand()*NIMG); % index of a random image
if queryimg == 0
queryimg = 1;
end
2019-11-08 11:51:33 +00:00
%% 3) Compute the distance of image to the query
dst=[];
for i=1:NIMG
candidate=ALLFEAT(i,:);
query=ALLFEAT(queryimg,:);
category=ALLCATs(i);
%% COMPARE FUNCTION
thedst=compareEuclidean(query,candidate);
dst=[dst ; [thedst i category]];
end
dst=sortrows(dst,1); % sort the results
%% 4) Calculate PR
2019-11-08 11:51:33 +00:00
precision_values=zeros([1, NIMG]);
recall_values=zeros([1, NIMG]);
correct_at_n=zeros([1, NIMG]);
query_row = dst(1,:);
query_category = query_row(1,3);
fprintf('category was %s\n', CATEGORIES(query_category))
%calculate PR for each n
2019-11-08 11:51:33 +00:00
for i=1:NIMG
rows = dst(1:i, :);
correct_results = 0;
incorrect_results = 0;
if i > 1
for n=1:i - 1
row = rows(n, :);
category = row(3);
if category == query_category
2019-11-08 11:51:33 +00:00
correct_results = correct_results + 1;
else
incorrect_results = incorrect_results + 1;
end
end
end
% LAST ROW
row = rows(i, :);
2019-11-07 16:36:30 +00:00
category = row(3);
2019-11-08 11:51:33 +00:00
2019-11-07 16:36:30 +00:00
if category == query_category
correct_results = correct_results + 1;
2019-11-08 11:51:33 +00:00
correct_at_n(i) = 1;
2019-11-07 16:36:30 +00:00
else
incorrect_results = incorrect_results + 1;
end
2019-11-08 11:51:33 +00:00
precision = correct_results / i;
recall = correct_results / CAT_HIST(1,query_category);
precision_values(i) = precision;
recall_values(i) = recall;
2019-11-07 16:36:30 +00:00
end
2019-11-08 11:51:33 +00:00
%% 5) calculate AP
2019-12-01 02:30:20 +00:00
average_precision = sum(precision_values .* correct_at_n) / CAT_HIST(1,run);
2019-11-08 11:51:33 +00:00
AP_values(run) = average_precision;
2019-11-08 11:51:33 +00:00
%% 6) plot PR curve
2019-11-08 11:51:33 +00:00
figure(1)
plot(recall_values, precision_values);
hold on;
title('PR Curve');
xlabel('Recall');
ylabel('Precision');
%% 7) Visualise the results
%% These may be a little hard to see using imgshow
%% If you have access, try using imshow(outdisplay) or imagesc(outdisplay)
% confusion_matrix = zeros(CAT_TOTAL);
%
% SHOW=15; % Show top 15 results
% dst=dst(1:SHOW,:);
% outdisplay=[];
% for i=1:size(dst,1)
% img=imread(ALLFILES{dst(i,2)});
% img=img(1:2:end,1:2:end,:); % make image a quarter size
% img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights)
% outdisplay=[outdisplay img];
%
% %populate confusion matrix
% confusion_matrix(query_category, dst(i,3)) = confusion_matrix(query_category, dst(i,3)) + 1;
% end
% figure(3)
% imgshow(outdisplay);
% axis off;
2019-11-08 11:51:33 +00:00
2019-11-07 16:36:30 +00:00
end
%% 8 Calculate MAP
% figure(4)
% histogram(AP_values);
% title('Average Precision Distribution');
% ylabel('Count');
% xlabel('Average Precision');
% xlim([0, 1]);
2019-11-12 16:27:04 +00:00
2019-11-08 11:51:33 +00:00
MAP = mean(AP_values)
2019-11-12 16:27:04 +00:00
AP_sd = std(AP_values)
2019-11-07 16:36:30 +00:00
% figure(2)
% plot(1:run_total, AP_values);
% title('Average Precision Per Run');
% xlabel('Run');
% ylabel('Average Precision');