Andy Pack
f29c435494
Affected files: .obsidian/graph.json .obsidian/workspace.json Gaming/Steam controllers.md Gaming/Ubisoft.md STEM/Signal Proc/Convolution.md STEM/Signal Proc/Fourier Transform.md STEM/Signal Proc/Pole-Zero.md STEM/Signal Proc/System Classes.md STEM/Signal Proc/Transfer Function.md STEM/Speech/Linguistics/Consonants.md STEM/Speech/Linguistics/Linguistics.md STEM/Speech/Linguistics/Terms.md STEM/Speech/Linguistics/Vowels.md STEM/Speech/Literature.md STEM/Speech/NLP/Jargon.md STEM/Speech/NLP/NLP.md STEM/Speech/NLP/Recognition.md STEM/Speech/Perception/Perception.md STEM/Speech/Speech Processing/Applications.md STEM/Speech/Speech Processing/Source-Filter.md STEM/Speech/Speech Processing/Vocal Tract.md Work/Applications/Anthropic/Cover letter.md Work/Applications/Anthropic/In line with values.md Work/Applications/Anthropic/Why Work.md Work/Companies.md Work/Freelancing.md Work/Products.md Work/Tech.md
29 lines
1.3 KiB
Markdown
29 lines
1.3 KiB
Markdown
---
|
|
tags:
|
|
- signals
|
|
---
|
|
$$Y(s)=H(s)\cdot X(s)$$
|
|
- $H(s)=\frac{Y(s)}{X(s)}=\frac{\mathcal L\{y(t)\}}{\mathcal L\{x(t)\}}$
|
|
|
|
$$Y(z)=H(z)\cdot X(z)$$
|
|
- $H(z)=\frac{Y(z)}{X(z)}=\frac{\mathcal Z\{y[n]\}}{\mathcal Z\{x[n]\}}$
|
|
|
|
$$G(\omega)=\frac{|Y|}{|X|}=|H(j\omega)|$$
|
|
- $H(j\omega)$, Frequency response
|
|
|
|
$$\phi(\omega)=arg(Y)-arg(X)=arg\left(H\left(j\omega\right)\right)$$
|
|
- $\phi(\omega)$, Phase shift
|
|
|
|
$$\tau_\phi(\omega)=-\frac{\phi(\omega)}{\omega}$$
|
|
- $\tau_\phi$, Phase delay
|
|
- Frequency-dependent amount of delay introduced to the sinusoid by $H$
|
|
|
|
$$\tau_g(\omega)=-\frac{d\phi(\omega)}{d\omega}$$
|
|
- $\tau_g$, Group delay
|
|
- Frequency-dependent amount of delay introduced to the envelope of the sinusoid by $H$
|
|
|
|
[Partial Fractions](https://lpsa.swarthmore.edu/BackGround/PartialFraction/PartialFraction.html#Order_of_numerator_polynomial_is_not_less_than_that_of_the_denominator)
|
|
[Partial Fractions for Laplace](https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXformPFE.html)
|
|
[Inverse Z Transform](https://lpsa.swarthmore.edu/ZXform/InvZXform/InvZXform.html)
|
|
|
|
[Discrete Time Systems:Impulse responses and convolution; An introduction to the Z-transform](https://homes.esat.kuleuven.be/~maapc/static/files/SYSTHEORY/Slides/Lecture5/Lecture5-Impulse%20responses%20and%20convolution%20layout.pdf) |