stem/AI/Neural Networks/MLP/MLP.md
andy 33ac3007bc vault backup: 2023-05-27 22:17:56
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
STEM/AI/Neural Networks/Activation Functions.md
STEM/AI/Neural Networks/CNN/FCN/FlowNet.md
STEM/AI/Neural Networks/CNN/FCN/ResNet.md
STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md
STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md
STEM/AI/Neural Networks/CNN/GAN/GAN.md
STEM/AI/Neural Networks/CNN/Interpretation.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/MLP/Back-Propagation.md
STEM/AI/Neural Networks/MLP/MLP.md
STEM/AI/Neural Networks/Transformers/Attention.md
STEM/CS/ABI.md
STEM/CS/Calling Conventions.md
STEM/CS/Code Types.md
STEM/CS/Language Binding.md
STEM/img/am-regulariser.png
STEM/img/skip-connections.png
2023-05-27 22:17:56 +01:00

837 B

  • Architectures
  • Single hidden layer can learn any function
    • Universal approximation theorem
  • Each hidden layer can operate as a different feature extraction layer
  • Lots of Weight Init to learn
  • Back-Propagation is supervised

!mlp-arch.png

Universal Approximation Theory

A finite Architectures MLP with 1 hidden layer can in theory approximate any mathematical function

!activation-function.png !mlp-arch-diagram.png

Weight Matrix

  • Use matrix multiplication for layer output
  • TLU is hard limiter !tlu.png
  • o_1 to o_4 must all be one to overcome -3.5 bias and force output to 1 !mlp-non-linear-decision.png
  • Can generate a non-linear Decision Boundary