stem/AI/Neural Networks/CNN/Max Pooling.md
andy 8f0b604256 vault backup: 2023-05-26 18:29:17
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
STEM/AI/Neural Networks/Activation Functions.md
STEM/AI/Neural Networks/CNN/CNN.md
STEM/AI/Neural Networks/CNN/Convolutional Layer.md
STEM/AI/Neural Networks/CNN/Examples.md
STEM/AI/Neural Networks/CNN/GAN/CycleGAN.md
STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md
STEM/AI/Neural Networks/CNN/GAN/GAN.md
STEM/AI/Neural Networks/CNN/GAN/StackGAN.md
STEM/AI/Neural Networks/CNN/GAN/cGAN.md
STEM/AI/Neural Networks/CNN/Inception Layer.md
STEM/AI/Neural Networks/CNN/Max Pooling.md
STEM/AI/Neural Networks/CNN/Normalisation.md
STEM/AI/Neural Networks/CV/Data Manipulations.md
STEM/AI/Neural Networks/CV/Datasets.md
STEM/AI/Neural Networks/CV/Filters.md
STEM/AI/Neural Networks/CV/Layer Structure.md
STEM/AI/Neural Networks/Weight Init.md
STEM/img/alexnet.png
STEM/img/cgan-example.png
STEM/img/cgan.png
STEM/img/cnn-cv-layer-arch.png
STEM/img/cnn-descriptor.png
STEM/img/cnn-normalisation.png
STEM/img/code-vector-math-for-control-results.png
STEM/img/cvmfc.png
STEM/img/cyclegan-results.png
STEM/img/cyclegan.png
STEM/img/data-aug.png
STEM/img/data-whitening.png
STEM/img/dc-gan.png
STEM/img/fine-tuning-freezing.png
STEM/img/gabor.png
STEM/img/gan-arch.png
STEM/img/gan-arch2.png
STEM/img/gan-results.png
STEM/img/gan-training-discriminator.png
STEM/img/gan-training-generator.png
STEM/img/googlenet-auxilliary-loss.png
STEM/img/googlenet-inception.png
STEM/img/googlenet.png
STEM/img/icv-pos-neg-examples.png
STEM/img/icv-results.png
STEM/img/inception-layer-arch.png
STEM/img/inception-layer-effect.png
STEM/img/lenet-1989.png
STEM/img/lenet-1998.png
STEM/img/max-pooling.png
STEM/img/stackgan-results.png
STEM/img/stackgan.png
STEM/img/under-over-fitting.png
STEM/img/vgg-arch.png
STEM/img/vgg-spec.png
STEM/img/word2vec.png
2023-05-26 18:29:17 +01:00

553 B

  • Maximum within window and writes result to output
    • Downsamples image
    • More non-linearity
  • Doesn't remove important information
    • Max value is the good bit
  • No parameters

!max-pooling.png

Design Parameters

  • Size of input image
    • 252 x 252 x 1 x n
  • Padding
  • Kernel size
    • 3 x 3 x 1
    • Doesn't need to be odd
      • 2 x 2
  • Stride
    • Typically n
      • For n x n kernel size
    • Sometimes 4 x 4 in early layers
      • 16 times less data
        • Rapid downsample
  • Size of computable output
    • 250 x 250 x 1 x n
      • Depends on padding and striding