stem/AI/Neural Networks/CNN/FCN/FCN.md
andy dcc57e2c85 vault backup: 2023-05-31 17:33:05
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
Gaming/Steam controllers.md
History/Britain.md
STEM/AI/Neural Networks/CNN/CNN.md
STEM/AI/Neural Networks/CNN/FCN/FCN.md
STEM/AI/Neural Networks/CNN/FCN/ResNet.md
STEM/AI/Neural Networks/CV/Datasets.md
STEM/AI/Neural Networks/Properties+Capabilities.md
STEM/AI/Neural Networks/Transformers/Attention.md
STEM/AI/Properties.md
Tattoo/Engineering.md
Tattoo/Sources.md
Tattoo/img/snake-coil.png
Untitled.canvas
2023-05-31 17:33:05 +01:00

943 B

Fully Convolutional Network

Convolutional Layer and UpConv with Activation Functions#ReLu but no others (pooling)

  • All some sort of Encoder-Decoder

Contractive → UpConv

Image Segmentation

  • For visual output
    • Previously image \rightarrow vector
  • Additional layers to up-sample representation to an image

!fcn-uses.png

!fcn-arch.png

Training

  • Rarely from scratch
  • Pre-trained weights
  • Replace final layers
    • MLP layers
    • White-noise initialised
  • Add upconv layer(s)
    • Fine-tune train
    • Freeze others
    • Annotated GT images
  • Can use summed per-pixel log Deep Learning#Loss Function

Evaluation

!fcn-eval.png

  • SDS
    • Classical method
    • 52% mAP
  • FCN
    • 62% mAP
  • Intersection over Union
    • IOU
    • Jaccard
    • Averaged over all images
    • J(A,B)=\frac{|A\cap B|}{|A\cup B|}