stem/AI/Neural Networks/SLP/Least Mean Square.md
Andy Pack abbd7bba68 vault backup: 2023-12-22 16:39:03
Affected files:
.obsidian/community-plugins.json
.obsidian/graph.json
.obsidian/plugins/calendar/data.json
.obsidian/plugins/calendar/main.js
.obsidian/plugins/calendar/manifest.json
.obsidian/plugins/dataview/main.js
.obsidian/plugins/dataview/manifest.json
.obsidian/plugins/dataview/styles.css
.obsidian/workspace.json
Events/Cardiff.md
Events/November 27th Week.md
Events/🪣🪣🪣.md
Food/From Aldi.md
Food/Meal Plans/Meals - 2023-06-18.md
Food/Meal Plans/Meals - 2023-06-24.md
Food/Meal Plans/Meals - 2023-07-30.md
Food/Meal Plans/Meals - 2023-08-06.md
Food/Meal Plans/Meals - 2023-08-13.md
Food/Meal Plans/Meals - 2023-08-20.md
Food/Meal Plans/Meals - 2023-08-27.md
Food/Meal Plans/Meals - 2023-09-03.md
Food/Meal Plans/Meals - 2023-09-10.md
Food/Meal Plans/Meals - 2023-09-17.md
Food/Meal Plans/Meals - 2023-09-25.md
Food/Meal Plans/Meals - 2023-10-02.md
Food/Meal Plans/Meals - 2023-10-14.md
Food/Meal Plans/Meals - 2023-10-22.md
Food/Meal Plans/Meals - 2023-10-30.md
Food/Meal Plans/Meals - 2023-11-05.md
Food/Meal Plans/Meals - 2023-11-14.md
Food/Meal Plans/Meals - 2023-11-20.md
Food/Meal Plans/Meals - 2023-12-03.md
Food/Meal Plans/Meals - 2023-12-11.md
Food/Meal Plans/Meals - 2023-12-16.md
Food/Meals.md
Food/Sauces.md
Lab/DNS.md
Lab/Deleted Packages.md
Lab/Domains.md
Lab/Ebook Laundering.md
Lab/Home.md
Lab/Linux/Alpine.md
Lab/Linux/KDE.md
Lab/Photo Migration.md
Lab/VPN Servers.md
Languages/Arabic.md
Languages/Spanish/Spanish.md
Languages/Spanish/Tenses.md
Languages/Spanish/Verbs.md
Money/Me/Accounts.md
Money/Me/Car.md
Money/Me/Home.md
Money/Me/Income.md
Money/Me/Monthly/23-04.md
Money/Me/Monthly/23-05.md
Money/Me/Monthly/23-06.md
Money/Me/Monthly/23-07.md
Money/Me/Monthly/23-08.md
Money/Me/Monthly/23-09.md
Money/Me/Monthly/23-10.md
Money/Me/Monthly/23-11.md
Money/Me/Monthly/23-12.md
Money/Me/Subs.md
STEM/AI/Classification/Classification.md
STEM/AI/Classification/Decision Trees.md
STEM/AI/Classification/Gradient Boosting Machine.md
STEM/AI/Classification/Logistic Regression.md
STEM/AI/Classification/Random Forest.md
STEM/AI/Classification/Supervised/SVM.md
STEM/AI/Classification/Supervised/Supervised.md
STEM/AI/Ethics.md
STEM/AI/Kalman Filter.md
STEM/AI/Learning.md
STEM/AI/Literature.md
STEM/AI/Neural Networks/Activation Functions.md
STEM/AI/Neural Networks/Architectures.md
STEM/AI/Neural Networks/CNN/CNN.md
STEM/AI/Neural Networks/CNN/Convolutional Layer.md
STEM/AI/Neural Networks/CNN/Examples.md
STEM/AI/Neural Networks/CNN/FCN/FCN.md
STEM/AI/Neural Networks/CNN/FCN/FlowNet.md
STEM/AI/Neural Networks/CNN/FCN/Highway Networks.md
STEM/AI/Neural Networks/CNN/FCN/ResNet.md
STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md
STEM/AI/Neural Networks/CNN/FCN/Super-Resolution.md
STEM/AI/Neural Networks/CNN/GAN/CycleGAN.md
STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md
STEM/AI/Neural Networks/CNN/GAN/GAN.md
STEM/AI/Neural Networks/CNN/GAN/StackGAN.md
STEM/AI/Neural Networks/CNN/GAN/cGAN.md
STEM/AI/Neural Networks/CNN/Inception Layer.md
STEM/AI/Neural Networks/CNN/Interpretation.md
STEM/AI/Neural Networks/CNN/Max Pooling.md
STEM/AI/Neural Networks/CNN/Normalisation.md
STEM/AI/Neural Networks/CNN/UpConv.md
STEM/AI/Neural Networks/CV/Data Manipulations.md
STEM/AI/Neural Networks/CV/Datasets.md
STEM/AI/Neural Networks/CV/Filters.md
STEM/AI/Neural Networks/CV/Layer Structure.md
STEM/AI/Neural Networks/CV/Visual Search/Visual Search.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/Learning/Boltzmann.md
STEM/AI/Neural Networks/Learning/Competitive Learning.md
STEM/AI/Neural Networks/Learning/Credit-Assignment Problem.md
STEM/AI/Neural Networks/Learning/Hebbian.md
STEM/AI/Neural Networks/Learning/Learning.md
STEM/AI/Neural Networks/Learning/Tasks.md
STEM/AI/Neural Networks/MLP/Back-Propagation.md
STEM/AI/Neural Networks/MLP/Decision Boundary.md
STEM/AI/Neural Networks/MLP/MLP.md
STEM/AI/Neural Networks/Neural Networks.md
STEM/AI/Neural Networks/Properties+Capabilities.md
STEM/AI/Neural Networks/RNN/Autoencoder.md
STEM/AI/Neural Networks/RNN/Deep Image Prior.md
STEM/AI/Neural Networks/RNN/LSTM.md
STEM/AI/Neural Networks/RNN/MoCo.md
STEM/AI/Neural Networks/RNN/RNN.md
STEM/AI/Neural Networks/RNN/Representation Learning.md
STEM/AI/Neural Networks/RNN/SimCLR.md
STEM/AI/Neural Networks/RNN/VQA.md
STEM/AI/Neural Networks/SLP/Least Mean Square.md
STEM/AI/Neural Networks/SLP/Perceptron Convergence.md
STEM/AI/Neural Networks/SLP/SLP.md
STEM/AI/Neural Networks/Training.md
STEM/AI/Neural Networks/Transformers/Attention.md
STEM/AI/Neural Networks/Transformers/LLM.md
STEM/AI/Neural Networks/Transformers/Transformers.md
STEM/AI/Neural Networks/Weight Init.md
STEM/AI/Pattern Matching/Dynamic Time Warping.md
STEM/AI/Pattern Matching/Markov/Markov.md
STEM/AI/Pattern Matching/Pattern Matching.md
STEM/AI/Problem Solving.md
STEM/AI/Properties.md
STEM/AI/Searching/Informed.md
STEM/AI/Searching/Searching.md
STEM/AI/Searching/Uninformed.md
STEM/CS/ABI.md
STEM/CS/Calling Conventions.md
STEM/CS/ISA.md
STEM/CS/Languages/Assembly.md
STEM/CS/Languages/Javascript.md
STEM/CS/Languages/Python.md
STEM/CS/Languages/Rust.md
STEM/CS/Quantum.md
STEM/CS/Resources.md
STEM/IOT/Networking/Networking.md
STEM/Light.md
STEM/Quantum/Confinement.md
STEM/Quantum/Orbitals.md
STEM/Quantum/Schrödinger.md
STEM/Quantum/Standard Model.md
STEM/Quantum/Wave Function.md
STEM/Speech/Linguistics/Consonants.md
STEM/Speech/Linguistics/Language Structure.md
STEM/Speech/Linguistics/Linguistics.md
STEM/Speech/Linguistics/Terms.md
STEM/Speech/Linguistics/Vowels.md
STEM/Speech/Literature.md
STEM/Speech/NLP/NLP.md
STEM/Speech/NLP/Recognition.md
STEM/Speech/Speech Processing/Applications.md
Work/Possible Tasks.md
Work/Tech.md
2023-12-22 16:39:03 +00:00

3.0 KiB
Raw Blame History

tags
ai
  • To handle overlapping classes
  • Linearity condition remains
    • Linear boundary
  • No hard limiter
    • Linear neuron
  • Cost function changed to error, J
    • Half doesnt matter for error
      • Disappears when differentiating
\mathfrak{E}(w)=\frac{1}{2}e^2(n)
  • Cost' w.r.t to weights
\frac{\partial\mathfrak{E}(w)}{\partial w}=e(n)\frac{\partial e(n)}{\partial w}
  • Calculate error, define delta
e(n)=d(n)-x^T(n)\cdot w(n)
\frac{\partial e(n)}{\partial w(n)}=-x(n)
\frac{\partial \mathfrak{E}(w)}{\partial w(n)}=-x(n)\cdot e(n)
  • Gradient vector
    • g=\nabla\mathfrak{E}(w)
    • Estimate via:
\hat{g}(n)=-x(n)\cdot e(n)
\hat{w}(n+1)=\hat{w}(n)+\eta \cdot x(n) \cdot e(n)
  • Above is a feedforward loop around weight vector, \hat{w}
    • Behaves like low-pass filter
      • Pass low frequency components of error signal
    • Average time constant of filtering action inversely proportional to learning-rate
      • Small value progresses algorithm slowly
        • Remembers more
        • Inverse of learning rate is measure of memory of LMS algorithm
  • $\hat{w}$ because it's an estimate of the weight vector that would result from steepest descent
    • Steepest descent follows well-defined trajectory through weight space for a given learning rate
    • LMS traces random trajectory
    • Stochastic gradient algorithm
    • Requires no knowledge of environmental statistics

Analysis

  • Convergence behaviour dependent on statistics of input vector and learning rate
    • Another way is that for a given dataset, the learning rate is critical
  • Convergence of the mean
    • E[\hat{w}(n)]\rightarrow w_0 \text{ as } n\rightarrow \infty
    • Converges to Wiener solution
    • Not helpful
  • Convergence in the mean square
    • E[e^2(n)]\rightarrow \text{constant, as }n\rightarrow\infty
  • Convergence in the mean square implies convergence in the mean
    • Not necessarily converse

Advantages

  • Simple
  • Model independent
    • Robust
  • Optimal in accordance with H^\infty, minimax criterion
    • If you do not know what you are up against, plan for the worst and optimise
  • Was considered an instantaneous approximation of gradient-descent

Disadvantages

  • Slow rate of convergence
  • Sensitivity to variation in eigenstructure of input
  • Typically requires iterations of 10 x dimensionality of the input space
    • Worse with high-d input spaces slp-mse
  • Use steepest descent
  • Partial derivatives slp-steepest-descent
  • Can be solved by matrix inversion
  • Stochastic
    • Random progress
    • Will overall improve

lms-algorithm

\hat{w}(n+1)=\hat{w}(n)+\eta\cdot x(n)\cdot[d(n)-x^T(n)\cdot\hat w(n)]
=[I-\eta\cdot x(n)x^T(n)]\cdot\hat{w}(n)+\eta\cdot x(n)\cdot d(n)

Where

\hat w(n)=z^{-1}[\hat w(n+1)]

Independence Theory

slp-lms-independence

sl-lms-summary