stem/AI/Neural Networks/Deep Learning.md
Andy Pack abbd7bba68 vault backup: 2023-12-22 16:39:03
Affected files:
.obsidian/community-plugins.json
.obsidian/graph.json
.obsidian/plugins/calendar/data.json
.obsidian/plugins/calendar/main.js
.obsidian/plugins/calendar/manifest.json
.obsidian/plugins/dataview/main.js
.obsidian/plugins/dataview/manifest.json
.obsidian/plugins/dataview/styles.css
.obsidian/workspace.json
Events/Cardiff.md
Events/November 27th Week.md
Events/🪣🪣🪣.md
Food/From Aldi.md
Food/Meal Plans/Meals - 2023-06-18.md
Food/Meal Plans/Meals - 2023-06-24.md
Food/Meal Plans/Meals - 2023-07-30.md
Food/Meal Plans/Meals - 2023-08-06.md
Food/Meal Plans/Meals - 2023-08-13.md
Food/Meal Plans/Meals - 2023-08-20.md
Food/Meal Plans/Meals - 2023-08-27.md
Food/Meal Plans/Meals - 2023-09-03.md
Food/Meal Plans/Meals - 2023-09-10.md
Food/Meal Plans/Meals - 2023-09-17.md
Food/Meal Plans/Meals - 2023-09-25.md
Food/Meal Plans/Meals - 2023-10-02.md
Food/Meal Plans/Meals - 2023-10-14.md
Food/Meal Plans/Meals - 2023-10-22.md
Food/Meal Plans/Meals - 2023-10-30.md
Food/Meal Plans/Meals - 2023-11-05.md
Food/Meal Plans/Meals - 2023-11-14.md
Food/Meal Plans/Meals - 2023-11-20.md
Food/Meal Plans/Meals - 2023-12-03.md
Food/Meal Plans/Meals - 2023-12-11.md
Food/Meal Plans/Meals - 2023-12-16.md
Food/Meals.md
Food/Sauces.md
Lab/DNS.md
Lab/Deleted Packages.md
Lab/Domains.md
Lab/Ebook Laundering.md
Lab/Home.md
Lab/Linux/Alpine.md
Lab/Linux/KDE.md
Lab/Photo Migration.md
Lab/VPN Servers.md
Languages/Arabic.md
Languages/Spanish/Spanish.md
Languages/Spanish/Tenses.md
Languages/Spanish/Verbs.md
Money/Me/Accounts.md
Money/Me/Car.md
Money/Me/Home.md
Money/Me/Income.md
Money/Me/Monthly/23-04.md
Money/Me/Monthly/23-05.md
Money/Me/Monthly/23-06.md
Money/Me/Monthly/23-07.md
Money/Me/Monthly/23-08.md
Money/Me/Monthly/23-09.md
Money/Me/Monthly/23-10.md
Money/Me/Monthly/23-11.md
Money/Me/Monthly/23-12.md
Money/Me/Subs.md
STEM/AI/Classification/Classification.md
STEM/AI/Classification/Decision Trees.md
STEM/AI/Classification/Gradient Boosting Machine.md
STEM/AI/Classification/Logistic Regression.md
STEM/AI/Classification/Random Forest.md
STEM/AI/Classification/Supervised/SVM.md
STEM/AI/Classification/Supervised/Supervised.md
STEM/AI/Ethics.md
STEM/AI/Kalman Filter.md
STEM/AI/Learning.md
STEM/AI/Literature.md
STEM/AI/Neural Networks/Activation Functions.md
STEM/AI/Neural Networks/Architectures.md
STEM/AI/Neural Networks/CNN/CNN.md
STEM/AI/Neural Networks/CNN/Convolutional Layer.md
STEM/AI/Neural Networks/CNN/Examples.md
STEM/AI/Neural Networks/CNN/FCN/FCN.md
STEM/AI/Neural Networks/CNN/FCN/FlowNet.md
STEM/AI/Neural Networks/CNN/FCN/Highway Networks.md
STEM/AI/Neural Networks/CNN/FCN/ResNet.md
STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md
STEM/AI/Neural Networks/CNN/FCN/Super-Resolution.md
STEM/AI/Neural Networks/CNN/GAN/CycleGAN.md
STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md
STEM/AI/Neural Networks/CNN/GAN/GAN.md
STEM/AI/Neural Networks/CNN/GAN/StackGAN.md
STEM/AI/Neural Networks/CNN/GAN/cGAN.md
STEM/AI/Neural Networks/CNN/Inception Layer.md
STEM/AI/Neural Networks/CNN/Interpretation.md
STEM/AI/Neural Networks/CNN/Max Pooling.md
STEM/AI/Neural Networks/CNN/Normalisation.md
STEM/AI/Neural Networks/CNN/UpConv.md
STEM/AI/Neural Networks/CV/Data Manipulations.md
STEM/AI/Neural Networks/CV/Datasets.md
STEM/AI/Neural Networks/CV/Filters.md
STEM/AI/Neural Networks/CV/Layer Structure.md
STEM/AI/Neural Networks/CV/Visual Search/Visual Search.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/Learning/Boltzmann.md
STEM/AI/Neural Networks/Learning/Competitive Learning.md
STEM/AI/Neural Networks/Learning/Credit-Assignment Problem.md
STEM/AI/Neural Networks/Learning/Hebbian.md
STEM/AI/Neural Networks/Learning/Learning.md
STEM/AI/Neural Networks/Learning/Tasks.md
STEM/AI/Neural Networks/MLP/Back-Propagation.md
STEM/AI/Neural Networks/MLP/Decision Boundary.md
STEM/AI/Neural Networks/MLP/MLP.md
STEM/AI/Neural Networks/Neural Networks.md
STEM/AI/Neural Networks/Properties+Capabilities.md
STEM/AI/Neural Networks/RNN/Autoencoder.md
STEM/AI/Neural Networks/RNN/Deep Image Prior.md
STEM/AI/Neural Networks/RNN/LSTM.md
STEM/AI/Neural Networks/RNN/MoCo.md
STEM/AI/Neural Networks/RNN/RNN.md
STEM/AI/Neural Networks/RNN/Representation Learning.md
STEM/AI/Neural Networks/RNN/SimCLR.md
STEM/AI/Neural Networks/RNN/VQA.md
STEM/AI/Neural Networks/SLP/Least Mean Square.md
STEM/AI/Neural Networks/SLP/Perceptron Convergence.md
STEM/AI/Neural Networks/SLP/SLP.md
STEM/AI/Neural Networks/Training.md
STEM/AI/Neural Networks/Transformers/Attention.md
STEM/AI/Neural Networks/Transformers/LLM.md
STEM/AI/Neural Networks/Transformers/Transformers.md
STEM/AI/Neural Networks/Weight Init.md
STEM/AI/Pattern Matching/Dynamic Time Warping.md
STEM/AI/Pattern Matching/Markov/Markov.md
STEM/AI/Pattern Matching/Pattern Matching.md
STEM/AI/Problem Solving.md
STEM/AI/Properties.md
STEM/AI/Searching/Informed.md
STEM/AI/Searching/Searching.md
STEM/AI/Searching/Uninformed.md
STEM/CS/ABI.md
STEM/CS/Calling Conventions.md
STEM/CS/ISA.md
STEM/CS/Languages/Assembly.md
STEM/CS/Languages/Javascript.md
STEM/CS/Languages/Python.md
STEM/CS/Languages/Rust.md
STEM/CS/Quantum.md
STEM/CS/Resources.md
STEM/IOT/Networking/Networking.md
STEM/Light.md
STEM/Quantum/Confinement.md
STEM/Quantum/Orbitals.md
STEM/Quantum/Schrödinger.md
STEM/Quantum/Standard Model.md
STEM/Quantum/Wave Function.md
STEM/Speech/Linguistics/Consonants.md
STEM/Speech/Linguistics/Language Structure.md
STEM/Speech/Linguistics/Linguistics.md
STEM/Speech/Linguistics/Terms.md
STEM/Speech/Linguistics/Vowels.md
STEM/Speech/Literature.md
STEM/Speech/NLP/NLP.md
STEM/Speech/NLP/Recognition.md
STEM/Speech/Speech Processing/Applications.md
Work/Possible Tasks.md
Work/Tech.md
2023-12-22 16:39:03 +00:00

2.0 KiB

tags
ai

deep-digit-classification

OCR Classification

Loss Function

Objective Function

ml-dl

These are the two essential characteristics of how deep learning learns from data: the incremental, layer-by-layer way in which increasingly complex representations are developed, and the fact that these intermediate incremental representations are learned jointly, each layer being updated to follow both the representational needs of the layer above and the needs of the layer below. Together, these two properties have made deep learning vastly more successful than previous approaches to machine learning.

Steps

Structure defining Compilation

  • Loss function
    • Metric of difference between output and target
  • Optimiser
    • How network will update
  • Metrics to monitor
    • Testing and training Data preprocess
  • Reshape input frame into linear array
  • Categorically encode labels Fit Predict Evaluate

Data Structure

  • Tensor flow = channels last
    • (samples, height, width, channels)
  • Vector data
    • 2D tensors of shape (samples, features)
  • Time series data or sequence data
    • 3D tensors of shape (samples, timesteps, features)
  • Images
    • 4D tensors of shape (samples, height, width, channels) or (samples, channels, height, Width)
  • Video
    • 5D tensors of shape (samples, frames, height, width, channels) or (samples, frames, channels , height, width)

photo-tensor matrix-dot-product