stem/AI/Classification/Classification.md
Andy Pack efa7a84a8b vault backup: 2023-12-27 21:56:22
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
Languages/Spanish/Spanish.md
STEM/AI/Classification/Classification.md
STEM/AI/Classification/Decision Trees.md
STEM/AI/Classification/Logistic Regression.md
STEM/AI/Classification/Random Forest.md
STEM/AI/Classification/Supervised/SVM.md
STEM/AI/Classification/Supervised/Supervised.md
STEM/AI/Neural Networks/Activation Functions.md
STEM/AI/Neural Networks/CNN/CNN.md
STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md
STEM/AI/Neural Networks/CNN/GAN/GAN.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/Properties+Capabilities.md
STEM/AI/Neural Networks/SLP/Perceptron Convergence.md
2023-12-27 21:56:22 +00:00

39 lines
1.0 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
tags:
- ai
- classification
---
*Given an observation, determine one class from a set of classes that best explains the observation*
***Features are discrete or continuous***
- 2 category classifier
- Dichotomiser
# Argmax
Argument that gives the maximum value from a target function
# Gaussian Classifier
[Training](Supervised/Supervised.md)
- Each class $i$ has it's own Gaussian $N_i=N(m_i,v_i)$
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)$$
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)$$
- With equal priors
![](../../img/gaussian-class.png)
# Discrete Classifier
- Each class $i$ has it's own histogram $H_i$
- Describes the probability of each observation type $k$
- $P(o_t=k|H_i)$, based on class-specific type counts
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)$$
- Nothing else known about classes
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)$$
- Given class priors $P(H_i)$
- Maximum posterior probability
- Bayes
![](../../img/coordinate-change.png)