stem/AI/Neural Networks/SLP/Least Mean Square.md
andy 7bc4dffd8b vault backup: 2023-06-06 11:48:49
Affected files:
STEM/AI/Neural Networks/CNN/Examples.md
STEM/AI/Neural Networks/CNN/FCN/FCN.md
STEM/AI/Neural Networks/CNN/FCN/ResNet.md
STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md
STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md
STEM/AI/Neural Networks/CNN/GAN/GAN.md
STEM/AI/Neural Networks/CNN/Interpretation.md
STEM/AI/Neural Networks/CNN/UpConv.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/MLP/MLP.md
STEM/AI/Neural Networks/Properties+Capabilities.md
STEM/AI/Neural Networks/SLP/Least Mean Square.md
STEM/AI/Neural Networks/SLP/SLP.md
STEM/AI/Neural Networks/Transformers/Transformers.md
STEM/AI/Properties.md
STEM/CS/Language Binding.md
STEM/CS/Languages/dotNet.md
STEM/Signal Proc/Image/Image Processing.md
2023-06-06 11:48:49 +01:00

3.0 KiB
Raw Blame History

  • To handle overlapping classes
  • Linearity condition remains
    • Linear boundary
  • No hard limiter
    • Linear neuron
  • Cost function changed to error, J
    • Half doesnt matter for error
      • Disappears when differentiating
\mathfrak{E}(w)=\frac{1}{2}e^2(n)
  • Cost' w.r.t to weights
\frac{\partial\mathfrak{E}(w)}{\partial w}=e(n)\frac{\partial e(n)}{\partial w}
  • Calculate error, define delta
e(n)=d(n)-x^T(n)\cdot w(n)
\frac{\partial e(n)}{\partial w(n)}=-x(n)
\frac{\partial \mathfrak{E}(w)}{\partial w(n)}=-x(n)\cdot e(n)
  • Gradient vector
    • g=\nabla\mathfrak{E}(w)
    • Estimate via:
\hat{g}(n)=-x(n)\cdot e(n)
\hat{w}(n+1)=\hat{w}(n)+\eta \cdot x(n) \cdot e(n)
  • Above is a feedforward loop around weight vector, \hat{w}
    • Behaves like low-pass filter
      • Pass low frequency components of error signal
    • Average time constant of filtering action inversely proportional to learning-rate
      • Small value progresses algorithm slowly
        • Remembers more
        • Inverse of learning rate is measure of memory of LMS algorithm
  • $\hat{w}$ because it's an estimate of the weight vector that would result from steepest descent
    • Steepest descent follows well-defined trajectory through weight space for a given learning rate
    • LMS traces random trajectory
    • Stochastic gradient algorithm
    • Requires no knowledge of environmental statistics

Analysis

  • Convergence behaviour dependent on statistics of input vector and learning rate
    • Another way is that for a given dataset, the learning rate is critical
  • Convergence of the mean
    • E[\hat{w}(n)]\rightarrow w_0 \text{ as } n\rightarrow \infty
    • Converges to Wiener solution
    • Not helpful
  • Convergence in the mean square
    • E[e^2(n)]\rightarrow \text{constant, as }n\rightarrow\infty
  • Convergence in the mean square implies convergence in the mean
    • Not necessarily converse

Advantages

  • Simple
  • Model independent
    • Robust
  • Optimal in accordance with H^\infty, minimax criterion
    • If you do not know what you are up against, plan for the worst and optimise
  • Was considered an instantaneous approximation of gradient-descent

Disadvantages

  • Slow rate of convergence
  • Sensitivity to variation in eigenstructure of input
  • Typically requires iterations of 10 x dimensionality of the input space
    • Worse with high-d input spaces slp-mse
  • Use steepest descent
  • Partial derivatives slp-steepest-descent
  • Can be solved by matrix inversion
  • Stochastic
    • Random progress
    • Will overall improve

lms-algorithm

\hat{w}(n+1)=\hat{w}(n)+\eta\cdot x(n)\cdot[d(n)-x^T(n)\cdot\hat w(n)]
=[I-\eta\cdot x(n)x^T(n)]\cdot\hat{w}(n)+\eta\cdot x(n)\cdot d(n)

Where

\hat w(n)=z^{-1}[\hat w(n+1)]

Independence Theory

slp-lms-independence

sl-lms-summary