andy
7bc4dffd8b
Affected files: STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/FCN/FCN.md STEM/AI/Neural Networks/CNN/FCN/ResNet.md STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/CNN/Interpretation.md STEM/AI/Neural Networks/CNN/UpConv.md STEM/AI/Neural Networks/Deep Learning.md STEM/AI/Neural Networks/MLP/MLP.md STEM/AI/Neural Networks/Properties+Capabilities.md STEM/AI/Neural Networks/SLP/Least Mean Square.md STEM/AI/Neural Networks/SLP/SLP.md STEM/AI/Neural Networks/Transformers/Transformers.md STEM/AI/Properties.md STEM/CS/Language Binding.md STEM/CS/Languages/dotNet.md STEM/Signal Proc/Image/Image Processing.md
33 lines
1.3 KiB
Markdown
33 lines
1.3 KiB
Markdown
# Activation Maximisation
|
|
- Synthesise an ideal image for a class
|
|
- Maximise 1-hot output
|
|
- Maximise [SoftMax](../Activation%20Functions.md#SoftMax)
|
|
|
|
![am](../../../img/am.png)
|
|
- **Use trained network**
|
|
- Don't update weights
|
|
- [Feedforward](../Architectures.md) noise
|
|
- [Back-propagate](../MLP/Back-Propagation.md) [loss](../Deep%20Learning.md#Loss%20Function)
|
|
- Don't update weights
|
|
- Update image
|
|
|
|
![am-process](../../../img/am-process.png)
|
|
## Regulariser
|
|
- Fit to natural image statistics
|
|
- Prone to high frequency noise
|
|
- Minimise
|
|
- Total variation
|
|
- $x^*$ is the best solution to minimise [loss](../Deep%20Learning.md#Loss%20Function)
|
|
|
|
$$x^*=\text{argmin}_{x\in \mathbb R^{H\times W\times C}}\mathcal l(\phi(x),\phi_0)$$
|
|
- Won't work
|
|
$$x^*=\text{argmin}_{x\in \mathbb R^{H\times W\times C}}\mathcal l(\phi(x),\phi_0)+\lambda\mathcal R(x)$$
|
|
- Need a regulariser like above
|
|
|
|
![am-regulariser](../../../img/am-regulariser.png)
|
|
|
|
$$\mathcal R_{V^\beta}(f)=\int_\Omega\left(\left(\frac{\partial f}{\partial u}(u,v)\right)^2+\left(\frac{\partial f}{\partial v}(u,v)\right)^2\right)^{\frac \beta 2}du\space dv$$
|
|
|
|
$$\mathcal R_{V^\beta}(x)=\sum_{i,j}\left(\left(x_{i,j+1}-x_{ij}\right)^2+\left(x_{i+1,j}-x_{ij}\right)^2\right)^{\frac \beta 2}$$
|
|
- Beta
|
|
- Degree of smoothing |