andy
8f0b604256
Affected files: .obsidian/graph.json .obsidian/workspace-mobile.json .obsidian/workspace.json STEM/AI/Neural Networks/Activation Functions.md STEM/AI/Neural Networks/CNN/CNN.md STEM/AI/Neural Networks/CNN/Convolutional Layer.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/GAN/CycleGAN.md STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/CNN/GAN/StackGAN.md STEM/AI/Neural Networks/CNN/GAN/cGAN.md STEM/AI/Neural Networks/CNN/Inception Layer.md STEM/AI/Neural Networks/CNN/Max Pooling.md STEM/AI/Neural Networks/CNN/Normalisation.md STEM/AI/Neural Networks/CV/Data Manipulations.md STEM/AI/Neural Networks/CV/Datasets.md STEM/AI/Neural Networks/CV/Filters.md STEM/AI/Neural Networks/CV/Layer Structure.md STEM/AI/Neural Networks/Weight Init.md STEM/img/alexnet.png STEM/img/cgan-example.png STEM/img/cgan.png STEM/img/cnn-cv-layer-arch.png STEM/img/cnn-descriptor.png STEM/img/cnn-normalisation.png STEM/img/code-vector-math-for-control-results.png STEM/img/cvmfc.png STEM/img/cyclegan-results.png STEM/img/cyclegan.png STEM/img/data-aug.png STEM/img/data-whitening.png STEM/img/dc-gan.png STEM/img/fine-tuning-freezing.png STEM/img/gabor.png STEM/img/gan-arch.png STEM/img/gan-arch2.png STEM/img/gan-results.png STEM/img/gan-training-discriminator.png STEM/img/gan-training-generator.png STEM/img/googlenet-auxilliary-loss.png STEM/img/googlenet-inception.png STEM/img/googlenet.png STEM/img/icv-pos-neg-examples.png STEM/img/icv-results.png STEM/img/inception-layer-arch.png STEM/img/inception-layer-effect.png STEM/img/lenet-1989.png STEM/img/lenet-1998.png STEM/img/max-pooling.png STEM/img/stackgan-results.png STEM/img/stackgan.png STEM/img/under-over-fitting.png STEM/img/vgg-arch.png STEM/img/vgg-spec.png STEM/img/word2vec.png
23 lines
323 B
Markdown
23 lines
323 B
Markdown
# MNIST
|
|
- 70,000 hand-drawn characters from US mail
|
|
- 28x28 images
|
|
- 10 classes (0 through 9)
|
|
- Achieved 99.83%
|
|
- Ciresan et al. 2011
|
|
|
|
# CIFAR-10
|
|
- 60,000 colour images
|
|
- 32x32 images
|
|
- 10 classes
|
|
- Airplane
|
|
- Automobile
|
|
- Bird
|
|
- Cat
|
|
- Deer
|
|
- Dog
|
|
- Frog
|
|
- Horse
|
|
- Ship
|
|
- Truck
|
|
- Achieved 90.7%
|
|
- Wan et al. 2013 |