Andy Pack
abbd7bba68
Affected files: .obsidian/community-plugins.json .obsidian/graph.json .obsidian/plugins/calendar/data.json .obsidian/plugins/calendar/main.js .obsidian/plugins/calendar/manifest.json .obsidian/plugins/dataview/main.js .obsidian/plugins/dataview/manifest.json .obsidian/plugins/dataview/styles.css .obsidian/workspace.json Events/Cardiff.md Events/November 27th Week.md Events/🪣🪣🪣.md Food/From Aldi.md Food/Meal Plans/Meals - 2023-06-18.md Food/Meal Plans/Meals - 2023-06-24.md Food/Meal Plans/Meals - 2023-07-30.md Food/Meal Plans/Meals - 2023-08-06.md Food/Meal Plans/Meals - 2023-08-13.md Food/Meal Plans/Meals - 2023-08-20.md Food/Meal Plans/Meals - 2023-08-27.md Food/Meal Plans/Meals - 2023-09-03.md Food/Meal Plans/Meals - 2023-09-10.md Food/Meal Plans/Meals - 2023-09-17.md Food/Meal Plans/Meals - 2023-09-25.md Food/Meal Plans/Meals - 2023-10-02.md Food/Meal Plans/Meals - 2023-10-14.md Food/Meal Plans/Meals - 2023-10-22.md Food/Meal Plans/Meals - 2023-10-30.md Food/Meal Plans/Meals - 2023-11-05.md Food/Meal Plans/Meals - 2023-11-14.md Food/Meal Plans/Meals - 2023-11-20.md Food/Meal Plans/Meals - 2023-12-03.md Food/Meal Plans/Meals - 2023-12-11.md Food/Meal Plans/Meals - 2023-12-16.md Food/Meals.md Food/Sauces.md Lab/DNS.md Lab/Deleted Packages.md Lab/Domains.md Lab/Ebook Laundering.md Lab/Home.md Lab/Linux/Alpine.md Lab/Linux/KDE.md Lab/Photo Migration.md Lab/VPN Servers.md Languages/Arabic.md Languages/Spanish/Spanish.md Languages/Spanish/Tenses.md Languages/Spanish/Verbs.md Money/Me/Accounts.md Money/Me/Car.md Money/Me/Home.md Money/Me/Income.md Money/Me/Monthly/23-04.md Money/Me/Monthly/23-05.md Money/Me/Monthly/23-06.md Money/Me/Monthly/23-07.md Money/Me/Monthly/23-08.md Money/Me/Monthly/23-09.md Money/Me/Monthly/23-10.md Money/Me/Monthly/23-11.md Money/Me/Monthly/23-12.md Money/Me/Subs.md STEM/AI/Classification/Classification.md STEM/AI/Classification/Decision Trees.md STEM/AI/Classification/Gradient Boosting Machine.md STEM/AI/Classification/Logistic Regression.md STEM/AI/Classification/Random Forest.md STEM/AI/Classification/Supervised/SVM.md STEM/AI/Classification/Supervised/Supervised.md STEM/AI/Ethics.md STEM/AI/Kalman Filter.md STEM/AI/Learning.md STEM/AI/Literature.md STEM/AI/Neural Networks/Activation Functions.md STEM/AI/Neural Networks/Architectures.md STEM/AI/Neural Networks/CNN/CNN.md STEM/AI/Neural Networks/CNN/Convolutional Layer.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/FCN/FCN.md STEM/AI/Neural Networks/CNN/FCN/FlowNet.md STEM/AI/Neural Networks/CNN/FCN/Highway Networks.md STEM/AI/Neural Networks/CNN/FCN/ResNet.md STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md STEM/AI/Neural Networks/CNN/FCN/Super-Resolution.md STEM/AI/Neural Networks/CNN/GAN/CycleGAN.md STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/CNN/GAN/StackGAN.md STEM/AI/Neural Networks/CNN/GAN/cGAN.md STEM/AI/Neural Networks/CNN/Inception Layer.md STEM/AI/Neural Networks/CNN/Interpretation.md STEM/AI/Neural Networks/CNN/Max Pooling.md STEM/AI/Neural Networks/CNN/Normalisation.md STEM/AI/Neural Networks/CNN/UpConv.md STEM/AI/Neural Networks/CV/Data Manipulations.md STEM/AI/Neural Networks/CV/Datasets.md STEM/AI/Neural Networks/CV/Filters.md STEM/AI/Neural Networks/CV/Layer Structure.md STEM/AI/Neural Networks/CV/Visual Search/Visual Search.md STEM/AI/Neural Networks/Deep Learning.md STEM/AI/Neural Networks/Learning/Boltzmann.md STEM/AI/Neural Networks/Learning/Competitive Learning.md STEM/AI/Neural Networks/Learning/Credit-Assignment Problem.md STEM/AI/Neural Networks/Learning/Hebbian.md STEM/AI/Neural Networks/Learning/Learning.md STEM/AI/Neural Networks/Learning/Tasks.md STEM/AI/Neural Networks/MLP/Back-Propagation.md STEM/AI/Neural Networks/MLP/Decision Boundary.md STEM/AI/Neural Networks/MLP/MLP.md STEM/AI/Neural Networks/Neural Networks.md STEM/AI/Neural Networks/Properties+Capabilities.md STEM/AI/Neural Networks/RNN/Autoencoder.md STEM/AI/Neural Networks/RNN/Deep Image Prior.md STEM/AI/Neural Networks/RNN/LSTM.md STEM/AI/Neural Networks/RNN/MoCo.md STEM/AI/Neural Networks/RNN/RNN.md STEM/AI/Neural Networks/RNN/Representation Learning.md STEM/AI/Neural Networks/RNN/SimCLR.md STEM/AI/Neural Networks/RNN/VQA.md STEM/AI/Neural Networks/SLP/Least Mean Square.md STEM/AI/Neural Networks/SLP/Perceptron Convergence.md STEM/AI/Neural Networks/SLP/SLP.md STEM/AI/Neural Networks/Training.md STEM/AI/Neural Networks/Transformers/Attention.md STEM/AI/Neural Networks/Transformers/LLM.md STEM/AI/Neural Networks/Transformers/Transformers.md STEM/AI/Neural Networks/Weight Init.md STEM/AI/Pattern Matching/Dynamic Time Warping.md STEM/AI/Pattern Matching/Markov/Markov.md STEM/AI/Pattern Matching/Pattern Matching.md STEM/AI/Problem Solving.md STEM/AI/Properties.md STEM/AI/Searching/Informed.md STEM/AI/Searching/Searching.md STEM/AI/Searching/Uninformed.md STEM/CS/ABI.md STEM/CS/Calling Conventions.md STEM/CS/ISA.md STEM/CS/Languages/Assembly.md STEM/CS/Languages/Javascript.md STEM/CS/Languages/Python.md STEM/CS/Languages/Rust.md STEM/CS/Quantum.md STEM/CS/Resources.md STEM/IOT/Networking/Networking.md STEM/Light.md STEM/Quantum/Confinement.md STEM/Quantum/Orbitals.md STEM/Quantum/Schrödinger.md STEM/Quantum/Standard Model.md STEM/Quantum/Wave Function.md STEM/Speech/Linguistics/Consonants.md STEM/Speech/Linguistics/Language Structure.md STEM/Speech/Linguistics/Linguistics.md STEM/Speech/Linguistics/Terms.md STEM/Speech/Linguistics/Vowels.md STEM/Speech/Literature.md STEM/Speech/NLP/NLP.md STEM/Speech/NLP/Recognition.md STEM/Speech/Speech Processing/Applications.md Work/Possible Tasks.md Work/Tech.md
2.1 KiB
2.1 KiB
tags | |
---|---|
|
Error-Correcting Perceptron Learning
- Uses a McCulloch-Pitt neuron
- One with a hard limiter
- Unity increment
- Learning rate of 1
If the $n$-th member of the training set, x(n)
, is correctly classified by the weight vector w(n)
computed at the $n$-th iteration of the algorithm, no correction is made to the weight vector of the perceptron in accordance with the rule:
w(n + 1) = w(n) \text{ if $w^Tx(n) > 0$ and $x(n)$ belongs to class $\mathfrak{c}_1$}
w(n + 1) = w(n) \text{ if $w^Tx(n) \leq 0$ and $x(n)$ belongs to class $\mathfrak{c}_2$}
Otherwise, the weight vector of the perceptron is updated in accordance with the rule
w(n + 1) = w(n) - \eta(n)x(n) \text{ if } w^Tx(n) > 0 \text{ and } x(n) \text{ belongs to class }\mathfrak{c}_2
w(n + 1) = w(n) + \eta(n)x(n) \text{ if } w^Tx(n) \leq 0 \text{ and } x(n) \text{ belongs to class }\mathfrak{c}_1
- Initialisation. Set
w(0)=0
. perform the following computations for
time stepn = 1, 2,...
- Activation. At time step
n
, activate the perceptron by applying continuous-valued input vectorx(n)
and desired responsed(n)
. - Computation of Actual Response. Compute the actual response of the perceptron:
y(n) = sgn[w^T(n)x(n)]
where sgn(\cdot)
is the signum function.
4. Adaptation of Weight Vector. Update the weight vector of the perceptron:
w(n+1)=w(n)+\eta[d(n)-y(n)]x(n)
d(n) = \begin{cases}
+1 &\text{if $x(n)$ belongs to class $\mathfrak{c_1}$}\\
-1 &\text{if $x(n)$ belongs to class $\mathfrak{c_2}$}
\end{cases}
- Continuation. Increment time step
n
by one and go back to step 2.
- Guarantees convergence provided
- Patterns are linearly separable
- Non-overlapping classes
- Linear separation boundary
- Learning rate not too high
- Patterns are linearly separable
- Two conflicting requirements
- Averaging of past inputs to provide stable weight estimates
- Small eta
- Fast adaptation with respect to real changes in the underlying distribution of process responsible for
x
- Large eta
- Averaging of past inputs to provide stable weight estimates