stem/Signal Proc/Convolution.md
Andy Pack f29c435494 vault backup: 2023-12-27 22:38:55
Affected files:
.obsidian/graph.json
.obsidian/workspace.json
Gaming/Steam controllers.md
Gaming/Ubisoft.md
STEM/Signal Proc/Convolution.md
STEM/Signal Proc/Fourier Transform.md
STEM/Signal Proc/Pole-Zero.md
STEM/Signal Proc/System Classes.md
STEM/Signal Proc/Transfer Function.md
STEM/Speech/Linguistics/Consonants.md
STEM/Speech/Linguistics/Linguistics.md
STEM/Speech/Linguistics/Terms.md
STEM/Speech/Linguistics/Vowels.md
STEM/Speech/Literature.md
STEM/Speech/NLP/Jargon.md
STEM/Speech/NLP/NLP.md
STEM/Speech/NLP/Recognition.md
STEM/Speech/Perception/Perception.md
STEM/Speech/Speech Processing/Applications.md
STEM/Speech/Speech Processing/Source-Filter.md
STEM/Speech/Speech Processing/Vocal Tract.md
Work/Applications/Anthropic/Cover letter.md
Work/Applications/Anthropic/In line with values.md
Work/Applications/Anthropic/Why Work.md
Work/Companies.md
Work/Freelancing.md
Work/Products.md
Work/Tech.md
2023-12-27 22:38:56 +00:00

1.4 KiB

tags
signals
maths

Integral operator

  • Satisfies mathematical properties of integral operator
  • Product of two after one has been reversed and shifted
x(t)=x_1(t)\circledast x_2(t)=\int_{-\infty}^\infty x_1(t-\tau)\cdot x_2(\tau)d\tau

Properties

  1. x_1(t)\circledast x_2(t)=x_2(t)\circledast x_1(t)
    • Commutativity
  2. (x_1(t)\circledast x_2(t))\circledast x_3(t)=x_1(t)\circledast (x_2(t)\circledast x_3(t))
    • Associativity
  3. x_1(t)\circledast [x_2(t)+x_3(t)]=x_1(t)\circledast x_2(t)+ x_1(t)\circledast x_3(t)
    • Distributivity
  4. Ax_1(t)\circledast Bx_2(t)=AB[x_1(t)\circledast x_2(t)]
    • Associativity with Scalar
  5. Symmetrical graph about origin
  6. y(t)=x_1(t-a)\circledast x_2(t-b)
    • x(t)=x_1(t)\circledast x_2(t)
    • y(t)=x(t-a-b)
  7. x(t)=x_1(t)\circledast x_2(t)
    • x_1 between a_1 and b_1
    • x_2 between a_2 and b_2
    • Starting point of x(t)=a_1+a_2
    • Ending point of x(t)=b_1+b_2
  8. \overline{x \circledast y}=\bar x \circledast \bar y
  9. (x \circledast y)'=x'\circledast y=x\circledast y'

Applications

  1. Communications systems
    • Shift signal in frequency domain (Frequency modulation)
  2. System analysis

Polynomial Multiplication

  • Convolving coefficients of two poly gives coefficients of product

Discrete

G[i,j]=H[u,v]\circledast F[i,j]
G[i,j]=\sum^k_{u=-k}\sum^k_{v=-k} H[u,v]F[i-u,j-v]