Andy Pack
f29c435494
Affected files: .obsidian/graph.json .obsidian/workspace.json Gaming/Steam controllers.md Gaming/Ubisoft.md STEM/Signal Proc/Convolution.md STEM/Signal Proc/Fourier Transform.md STEM/Signal Proc/Pole-Zero.md STEM/Signal Proc/System Classes.md STEM/Signal Proc/Transfer Function.md STEM/Speech/Linguistics/Consonants.md STEM/Speech/Linguistics/Linguistics.md STEM/Speech/Linguistics/Terms.md STEM/Speech/Linguistics/Vowels.md STEM/Speech/Literature.md STEM/Speech/NLP/Jargon.md STEM/Speech/NLP/NLP.md STEM/Speech/NLP/Recognition.md STEM/Speech/Perception/Perception.md STEM/Speech/Speech Processing/Applications.md STEM/Speech/Speech Processing/Source-Filter.md STEM/Speech/Speech Processing/Vocal Tract.md Work/Applications/Anthropic/Cover letter.md Work/Applications/Anthropic/In line with values.md Work/Applications/Anthropic/Why Work.md Work/Companies.md Work/Freelancing.md Work/Products.md Work/Tech.md
1.4 KiB
1.4 KiB
tags | ||
---|---|---|
|
Integral operator
- Satisfies mathematical properties of integral operator
- Product of two after one has been reversed and shifted
x(t)=x_1(t)\circledast x_2(t)=\int_{-\infty}^\infty x_1(t-\tau)\cdot x_2(\tau)d\tau
Properties
x_1(t)\circledast x_2(t)=x_2(t)\circledast x_1(t)
- Commutativity
(x_1(t)\circledast x_2(t))\circledast x_3(t)=x_1(t)\circledast (x_2(t)\circledast x_3(t))
- Associativity
x_1(t)\circledast [x_2(t)+x_3(t)]=x_1(t)\circledast x_2(t)+ x_1(t)\circledast x_3(t)
- Distributivity
Ax_1(t)\circledast Bx_2(t)=AB[x_1(t)\circledast x_2(t)]
- Associativity with Scalar
- Symmetrical graph about origin
y(t)=x_1(t-a)\circledast x_2(t-b)
x(t)=x_1(t)\circledast x_2(t)
y(t)=x(t-a-b)
x(t)=x_1(t)\circledast x_2(t)
x_1
betweena_1
andb_1
x_2
betweena_2
andb_2
- Starting point of
x(t)=a_1+a_2
- Ending point of
x(t)=b_1+b_2
\overline{x \circledast y}=\bar x \circledast \bar y
(x \circledast y)'=x'\circledast y=x\circledast y'
Applications
- Communications systems
- Shift signal in frequency domain (Frequency modulation)
- System analysis
- Find system output given input and transfer function
Polynomial Multiplication
- Convolving coefficients of two poly gives coefficients of product
Discrete
G[i,j]=H[u,v]\circledast F[i,j]
G[i,j]=\sum^k_{u=-k}\sum^k_{v=-k} H[u,v]F[i-u,j-v]