stem/AI/Neural Networks/CNN/Interpretation.md
andy 3fc7fa863e vault backup: 2023-12-22 12:45:16
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
Christmas Movies.md
Politcs/Fascism.md
Politcs/Neoliberalism/Neoliberalism.md
STEM/AI/Neural Networks/CNN/Interpretation.md
STEM/CS/Languages/Python.md
STEM/IOT/OS/Composition.md
STEM/IOT/OS/Contiki.md
STEM/IOT/OS/OS.md
STEM/IOT/OS/README.md
STEM/img/iot-event-based.png
STEM/img/iot-os-stack.png
STEM/img/iot-thread-based.png
2023-12-22 12:45:16 +00:00

1.3 KiB

Activation Maximisation

  • Synthesise an ideal image for a class
    • Maximise 1-hot output
    • Maximise SoftMax

am

am-process

Regulariser

  • Fit to natural image statistics
  • Prone to high frequency noise
    • Minimise
  • Total variation
    • x^* is the best solution to minimise loss
x^*=\text{argmin}_{x\in \mathbb R^{H\times W\times C}}\mathcal l(\phi(x),\phi_0)
  • Won't work
x^*=\text{argmin}_{x\in \mathbb R^{H\times W\times C}}\mathcal l(\phi(x),\phi_0)+\lambda\mathcal R(x)
  • Need a regulariser like above

am-regulariser

\mathcal R_{V^\beta}(f)=\int_\Omega\left(\left(\frac{\partial f}{\partial u}(u,v)\right)^2+\left(\frac{\partial f}{\partial v}(u,v)\right)^2\right)^{\frac \beta 2}du\space dv
\mathcal R_{V^\beta}(x)=\sum_{i,j}\left(\left(x_{i,j+1}-x_{ij}\right)^2+\left(x_{i+1,j}-x_{ij}\right)^2\right)^{\frac \beta 2}
  • Beta
    • Degree of smoothing