andy
3606944190
Affected files: .obsidian/graph.json .obsidian/workspace-mobile.json .obsidian/workspace.json Food/Meal Plan.md Lab/Linux/Alpine.md Lab/Linux/KDE.md Lab/Scratch Domain.md Lab/Windows/Active Directory.md Languages/Spanish/README.md Languages/Spanish/Spanish.md Money/Accounts.md Money/Monthly/23-04.md Money/Monthly/23-05.md Money/Monthly/23-06.md Projects/Mixonomer.md Projects/NoteCrawler.md Projects/Projects.md Projects/README.md Projects/Selector.md Projects/To Do App.md Projects/img/selector-arch.png STEM/AI/Classification/Supervised/SVM.md STEM/AI/Neural Networks/CNN/FCN/Super-Resolution.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/CNN/GAN/cGAN.md STEM/AI/Neural Networks/CNN/Interpretation.md STEM/AI/Neural Networks/Deep Learning.md STEM/AI/Neural Networks/MLP/MLP.md STEM/AI/Neural Networks/Properties+Capabilities.md STEM/AI/Neural Networks/RNN/Representation Learning.md STEM/AI/Pattern Matching/Markov/Markov.md STEM/AI/Searching/Informed.md STEM/AI/Searching/README.md STEM/AI/Searching/Searching.md STEM/AI/Searching/Uninformed.md STEM/CS/Languages/Javascript.md STEM/CS/Languages/Python.md STEM/CS/Languages/dotNet.md STEM/CS/Resources.md STEM/IOT/Cyber-Physical Systems.md STEM/IOT/Networking/Networking.md STEM/IOT/Networking/README.md STEM/IOT/Software Services.md STEM/img/cyberphysical-social-data.png STEM/img/cyberphysical-system-types.png STEM/img/cyberphysical-systems.png STEM/img/depth-first-cons.png STEM/img/depth-first.png STEM/img/iot-mesh-network.png STEM/img/iot-network-radar.png STEM/img/iot-network-types 1.png STEM/img/iot-network-types.png STEM/img/markov-start-end-matrix.png STEM/img/markov-start-end-probs.png STEM/img/markov-start-end.png STEM/img/markov-state-duration.png STEM/img/markov-state.png STEM/img/markov-weather.png STEM/img/search-bidirectional.png STEM/img/search-breadth-first.png STEM/img/search-lim-goal.png STEM/img/search-lim1.png STEM/img/search-lim2.png STEM/img/search-lim3-2.png STEM/img/search-lim3.png STEM/img/search-lim4.png STEM/img/searching-graph-tree.png STEM/img/searching-graph.png Work/Freelancing.md
56 lines
1.7 KiB
Markdown
56 lines
1.7 KiB
Markdown
[Hidden Markov Models - JWMI Github](https://jwmi.github.io/ASM/5-HMMs.pdf)
|
||
[Rabiner - A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition](https://www.cs.cmu.edu/~cga/behavior/rabiner1.pdf)
|
||
|
||
- Stochastic sequences of discrete states
|
||
- Transitions have probabilities
|
||
- Desired output not always produced the same
|
||
- Same pronunciation
|
||
|
||
![](../../../img/markov-state.png)
|
||
|
||
$$P(X|M)=\left(\prod_{t=1}^Ta_{x_{t-1}x_t}\right)\eta_{x_T}$$
|
||
$$a_{x_0x_1}=\pi_{x_1}$$
|
||
|
||
# 1st Order
|
||
- Depends only on previous state
|
||
- Markov assumption
|
||
|
||
$$P(x_t=j|x_{t-1}=i,x_{t-2}=h,...)\approx P(x_t=j|x_{t-1}=i)$$
|
||
|
||
- Described by state-transition probabilities
|
||
|
||
$$a_{ij}=P(x_t=j|x_{t-1}=i), 1\leq i,j\leq N$$
|
||
|
||
- $\alpha$
|
||
- State transition
|
||
- For $N$ states
|
||
- $N$ by $N$ matrix of state transition probabilities
|
||
|
||
# Weather
|
||
|
||
![](../../../img/markov-weather.png)
|
||
$$A=\left\{a_{ij}\right\}=\begin{bmatrix} 0.4 & 0.3 & 0.3\\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$
|
||
rain, cloud, sun across columns and down rows
|
||
$$A=\{\pi_j,a_{ij},\eta_i\}=\{P(x_t=j|x_{t-1}=i)\}$$
|
||
|
||
# Start/End
|
||
- Null states
|
||
- Entry/exit states
|
||
- Don't generate observations
|
||
|
||
![](../../../img/markov-start-end.png)
|
||
$$\pi_j=P(x_1=j) \space 1 \leq j \leq N$$
|
||
- Sub $j$ because probability of kicking off into that state
|
||
$$\eta_i=P(x_T=i) \space 1 \leq i \leq N$$
|
||
- Sub $i$ because probability of finishing from that state
|
||
|
||
![](../../../img/markov-start-end-probs.png)
|
||
![](../../../img/markov-start-end-matrix.png)
|
||
|
||
# State Duration
|
||
- Probability of staying in state decays exponentially
|
||
$$p(X|x_1=i,M)=(a_{ii})^{\tau-1}(1-a_{ii})$$
|
||
![](../../../img/markov-state-duration.png)
|
||
- Given, $a_{33}=0.8$
|
||
- $\times0.8$ repeatedly
|
||
- Stay in state |