andy
3606944190
Affected files: .obsidian/graph.json .obsidian/workspace-mobile.json .obsidian/workspace.json Food/Meal Plan.md Lab/Linux/Alpine.md Lab/Linux/KDE.md Lab/Scratch Domain.md Lab/Windows/Active Directory.md Languages/Spanish/README.md Languages/Spanish/Spanish.md Money/Accounts.md Money/Monthly/23-04.md Money/Monthly/23-05.md Money/Monthly/23-06.md Projects/Mixonomer.md Projects/NoteCrawler.md Projects/Projects.md Projects/README.md Projects/Selector.md Projects/To Do App.md Projects/img/selector-arch.png STEM/AI/Classification/Supervised/SVM.md STEM/AI/Neural Networks/CNN/FCN/Super-Resolution.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/CNN/GAN/cGAN.md STEM/AI/Neural Networks/CNN/Interpretation.md STEM/AI/Neural Networks/Deep Learning.md STEM/AI/Neural Networks/MLP/MLP.md STEM/AI/Neural Networks/Properties+Capabilities.md STEM/AI/Neural Networks/RNN/Representation Learning.md STEM/AI/Pattern Matching/Markov/Markov.md STEM/AI/Searching/Informed.md STEM/AI/Searching/README.md STEM/AI/Searching/Searching.md STEM/AI/Searching/Uninformed.md STEM/CS/Languages/Javascript.md STEM/CS/Languages/Python.md STEM/CS/Languages/dotNet.md STEM/CS/Resources.md STEM/IOT/Cyber-Physical Systems.md STEM/IOT/Networking/Networking.md STEM/IOT/Networking/README.md STEM/IOT/Software Services.md STEM/img/cyberphysical-social-data.png STEM/img/cyberphysical-system-types.png STEM/img/cyberphysical-systems.png STEM/img/depth-first-cons.png STEM/img/depth-first.png STEM/img/iot-mesh-network.png STEM/img/iot-network-radar.png STEM/img/iot-network-types 1.png STEM/img/iot-network-types.png STEM/img/markov-start-end-matrix.png STEM/img/markov-start-end-probs.png STEM/img/markov-start-end.png STEM/img/markov-state-duration.png STEM/img/markov-state.png STEM/img/markov-weather.png STEM/img/search-bidirectional.png STEM/img/search-breadth-first.png STEM/img/search-lim-goal.png STEM/img/search-lim1.png STEM/img/search-lim2.png STEM/img/search-lim3-2.png STEM/img/search-lim3.png STEM/img/search-lim4.png STEM/img/searching-graph-tree.png STEM/img/searching-graph.png Work/Freelancing.md
2.1 KiB
2.1 KiB
Towards Data Science: SVM Towards Data Science: SVM an overview
- Dividing line between two classes
- Optimal hyperplane for a space
- Margin maximising hyperplane
- Can be used for
- Classification
- SVC
- Regression
- SVR
- Classification
- Alternative to Eigenmodels for supervised classification
- For smaller datasets
- Hard to scale on larger sets
-
Support vector points
- Closest points to the hyperplane
- Lines to hyperplane are support vectors
-
Maximise margin between classes
-
Take dot product of test point with vector perpendicular to support vector
-
Sign determines class
Pros
- Linear or non-linear discrimination
- Effective in higher dimensions
- Effective when number of features higher than training examples
- Best for when classes are separable
- Outliers have less impact
Cons
- Long time for larger datasets
- Doesn’t do well when overlapping
- Selecting appropriate kernel
Parameters
- C
- Gamma
- Controls area of influence for data points
- High gamma reduces influence of faraway points
Hyperplane
\beta_0+\beta_1X_1+\beta_2X_2+\cdot\cdot\cdot+\beta_pX_p=0
- $p$-dimensional space
- If $X$ satisfies equation
- On plane
- Maximal margin hyperplane
- Perpendicular distance from each observation to given plane
- Best plane has highest distance
- If support vector points shift
- Plane shifts
- Hyperplane only depends on the support vectors
- Rest don't matter