stem/AI/Neural Networks/Properties+Capabilities.md
andy 5a592c8c7c vault backup: 2023-05-26 06:37:13
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
STEM/AI/Ethics.md
STEM/AI/Neural Networks/Activation Functions.md
STEM/AI/Neural Networks/CNN/CNN.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/MLP/Back-Propagation.md
STEM/AI/Neural Networks/MLP/MLP.md
STEM/AI/Neural Networks/Neural Networks.md
STEM/AI/Neural Networks/Properties+Capabilities.md
STEM/AI/Neural Networks/RNN/LSTM.md
STEM/AI/Neural Networks/RNN/RNN.md
STEM/AI/Neural Networks/RNN/VQA.md
STEM/AI/Neural Networks/SLP/SLP.md
STEM/AI/Neural Networks/Training.md
STEM/AI/Neural Networks/Transformers/Attention.md
STEM/AI/Neural Networks/Transformers/LLM.md
STEM/AI/Neural Networks/Transformers/Transformers.md
STEM/Signal Proc/System Classes.md
STEM/img/back-prop-equations.png
STEM/img/back-prop-weight-changes.png
STEM/img/back-prop1.png
STEM/img/back-prop2.png
STEM/img/cnn+lstm.png
STEM/img/deep-digit-classification.png
STEM/img/deep-loss-function.png
STEM/img/llm-family-tree.png
STEM/img/lstm-slp.png
STEM/img/lstm.png
STEM/img/matrix-dot-product.png
STEM/img/ml-dl.png
STEM/img/photo-tensor.png
STEM/img/relu.png
STEM/img/rnn-input.png
STEM/img/rnn-recurrence.png
STEM/img/slp-arch.png
STEM/img/threshold-activation.png
STEM/img/transformer-arch.png
STEM/img/vqa-block.png
2023-05-26 06:37:13 +01:00

98 lines
3.2 KiB
Markdown

# Linearity
- Neurons can be linear or non-linear
- Network of non-linear neurons is non-linear
- Non-linearity is distributed
- Helpful if target signals are generated non-linearly
# Input-Output Mapping
- Map input signal to desired response
- Supervised learning
- Similar to non-parametric statistical inference
- Non-parametric as in no prior assumptions
- No probabilistic model
# Adaptivity
- Synaptic weights
- Can be easily retrained
- Stationary environment
- Essential statistics can be learned
- Model can then be frozen
- Non-stationary environments
- Can change weights in real-time
- In general, more adaptive = more robust
- Not always though
- Short time-constant system may be thrown by short-time spurious disturbances
- Stability-plasticity dilemma
- Not equipped to track statistical variations
- Adaptive system
- Linear adaptive filter
- Linear combiner
- Single neuron operating in linear mode
- Mature applications
- Nonlinear adaptive filters
- Less mature
- Environments typically considered pseudo-stationary
- Speech stationary over short windows
- Retrain network at regular intervals to account for fluctuations
- E.g. stock market
- Train network on short time window
- Add new data and pop old
- Slide window
- Retrain network
# Evidential Response
- Decisions are made with evidence not just declared
- Confidence value
# Contextual Information
- Knowledge represented by structure and activation weight
- Any neuron can be affected by global activity
- Contextual information handled naturally
# Fault Tolerance
- Hardware implementations
- Performance degrades gracefully with adverse conditions
- If some of it breaks, it won't cause the whole thing to break
- Like a real brain
# VLSI Implementability
- Very large-scale integration
- Chips with millions of transistors (MOS)
- E.g. microprocessor, memory chips
- Massively parallel nature
- Well suited for VLSI
# Uniformity in Analysis
- Are domain agnostic in application
- Analysis methods are the same
- Can share theories, learning algorithms
# Neurobiological Analogy
- Design analogous to brain
- Already a demonstrable fault-tolerant, powerful, fast, parallel processor
- To slight changes
- Rotation of target in images
- Doppler shift in radar
- Network needs to be invariant to these transformations
# Invariance
1. Invariance by Structure
- Synaptic connections created so that transformed input produces same output
- Set same weight for neurons of some geometric relationship to image
- Same distance from centre e.g.
- Number of connections becomes prohibitively large
2. Invariance by Training
- Train on different views/transformations
- Take advantage of inherent pattern classification abilities
- Training for invariance for one object is not necessarily going to train other classes for invariance
- Extra load on network to do more training
- Exacerbated with high dimensionality
3. Invariant Feature Space
- Extract invariant features
- Use network as classifier
- Relieves burden on network to achieve invariance
- Complicated decision boundaries
- Number of features applied to network reduced
- Invariance ensured
- Required prior knowledge