stem/AI/Neural Networks/MLP/Back-Propagation.md
andy 33ac3007bc vault backup: 2023-05-27 22:17:56
Affected files:
.obsidian/graph.json
.obsidian/workspace-mobile.json
.obsidian/workspace.json
STEM/AI/Neural Networks/Activation Functions.md
STEM/AI/Neural Networks/CNN/FCN/FlowNet.md
STEM/AI/Neural Networks/CNN/FCN/ResNet.md
STEM/AI/Neural Networks/CNN/FCN/Skip Connections.md
STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md
STEM/AI/Neural Networks/CNN/GAN/GAN.md
STEM/AI/Neural Networks/CNN/Interpretation.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/MLP/Back-Propagation.md
STEM/AI/Neural Networks/MLP/MLP.md
STEM/AI/Neural Networks/Transformers/Attention.md
STEM/CS/ABI.md
STEM/CS/Calling Conventions.md
STEM/CS/Code Types.md
STEM/CS/Language Binding.md
STEM/img/am-regulariser.png
STEM/img/skip-connections.png
2023-05-27 22:17:56 +01:00

3.0 KiB

Error signal graph

!mlp-arch-graph.png

  1. Error Signal
    • e_j(n)=d_j(n)-y_j(n)
  2. Net Internal Sum
    • v_j(n)=\sum_{i=0}^mw_{ji}(n)y_i(n)
  3. Output
    • y_j(n)=\varphi_j(v_j(n))
  4. Instantaneous Sum of Squared Errors
    • \mathfrak{E}(n)=\frac 1 2 \sum_{j\in C}e_j^2(n)
    • C = o/p layer nodes
  5. Average Squared Error
    • \mathfrak E_{av}=\frac 1 N\sum_{n=1}^N\mathfrak E (n)
\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}=
\frac{\partial\mathfrak E(n)}{\partial e_j(n)}
\frac{\partial e_j(n)}{\partial y_j(n)}
\frac{\partial y_j(n)}{\partial v_j(n)}
\frac{\partial v_j(n)}{\partial w_{ji}(n)}

From 4

\frac{\partial\mathfrak E(n)}{\partial e_j(n)}=
e_j(n)$$
#### From 1
$$\frac{\partial e_j(n)}{\partial y_j(n)}=-1$$
#### From 3 (note prime)
$$\frac{\partial y_j(n)}{\partial v_j(n)}=
\varphi_j'(v_j(n))$$
#### From 2
$$\frac{\partial v_j(n)}{\partial w_{ji}(n)}=
y_i(n)$$

## Composite
$$\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}=
-e_j(n)\cdot
\varphi_j'(v_j(n))\cdot
y_i(n)
\Delta w_{ji}(n)=
-\eta\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}$$
$$\Delta w_{ji}(n)=
\eta\delta_j(n)y_i(n)$$
## Gradients
#### Output Local
$$\delta_j(n)=-\frac{\partial\mathfrak E (n)}{\partial v_j(n)}$$
$$=-
\frac{\partial\mathfrak E(n)}{\partial e_j(n)}
\frac{\partial e_j(n)}{\partial y_j(n)}
\frac{\partial y_j(n)}{\partial v_j(n)}$$
$$=
e_j(n)\cdot
\varphi_j'(v_j(n))

Hidden Local

\delta_j(n)=-
\frac{\partial\mathfrak E (n)}{\partial y_j(n)}
\frac{\partial y_j(n)}{\partial v_j(n)}$$
$$=-
\frac{\partial\mathfrak E (n)}{\partial y_j(n)}
\cdot
\varphi_j'(v_j(n))$$
$$\delta_j(n)=
\varphi_j'(v_j(n))
\cdot
\sum_k \delta_k(n)\cdot w_{kj}(n)$$

## Weight Correction
$$\text{weight correction = learning rate $\cdot$ local gradient $\cdot$ input signal of neuron $j$}$$
$$\Delta w_{ji}(n)=\eta\cdot\delta_j(n)\cdot y_i(n)$$

-   Looking for partial derivative of error with respect to each weight
-   4 partial derivatives
	1.  Sum of squared errors WRT error in one output node
	2.  Error WRT output $y$
	3.  Output $y$ WRT Pre-activation function sum
	4.  Pre-activation function sum WRT weight
		-   Other [[Weight Init|weights]] constant, goes to zero
		-   Leaves just $y_i$
	-   Collect 3 boxed terms as delta $j$
		-   Local gradient
-   Weight correction can be too slow raw
	-   Gets stuck
	-   Add momentum

![[mlp-local-hidden-grad.png]]

-   Nodes further back
	-   More complicated
	-   Sum of later local gradients multiplied by backward weight (orange)
	-   Multiplied by differential of activation function at node

## Global Minimum
-   Much more complex error surface than least-means-squared
-   No guarantees of convergence
	-   Non-linear optimisation
-   Momentum
	- $+\alpha\Delta w_{ji}(n-1), 0\leq|\alpha|<1$
	-   Proportional to the change in weights last iteration
		-   Can shoot past local minima if descending quickly

![[mlp-global-minimum.png]]

![[back-prop1.png]]
![[back-prop2.png]]

![[back-prop-equations.png]]

$w^+_5=w_5-\eta\cdot\frac{\partial E_{total}}{\partial w_5}$

![[back-prop-weight-changes.png]]