stem/Semiconductors/Equations.md
andy b30da1d29c vault backup: 2023-06-01 08:11:37
Affected files:
.obsidian/graph.json
.obsidian/workspace.json
Money/Assets/Derivative.md
STEM/AI/Neural Networks/CNN/Examples.md
STEM/AI/Neural Networks/Deep Learning.md
STEM/AI/Neural Networks/MLP/Decision Boundary.md
STEM/CS/Languages/dotNet.md
STEM/Semiconductors/Equations.md
Tattoo/Engineering.md
2023-06-01 08:11:37 +01:00

30 lines
655 B
Markdown

$$R=\frac{\rho L}{A}$$
- $R$ = Resistance
- $\rho$ = Resistivity ($\Omega cm$)
- $L$ = Length
- $A$ = CS Area
$$J=\sigma E$$
- $J$ = Current Density
- $\sigma$ = Conductivity ($\frac{1}{\Omega cm}$)
- $E$ = Electric Field
$$V_{bi} = \frac{kT}{q}ln(\frac{N_D N_A}{n_i^2})$$
- $V_{bi}$ = Built-in Potential
[Doping](Doping.md)
$$J=nev$$
- $n$ = Charge Density
- $e$ = Charge
- $v$ = Drift Velocity
$$v=\mu E$$
- $v$ = Drift Velocity
- $\mu$ = Mobility
- $E$ = Electric Field
$$\sigma = ne\mu$$
$$\rho=\frac{1}{\sigma}$$
$$\sigma=q(\mu_nn+\mu_pp)$$
- $q$ = Electronic Charge
- $\mu$ = Carrier Mobility ($\frac{cm^2}{Vs}$)
$$1 eV = 1.602\times 10^{-19}J$$