Affected files: .obsidian/graph.json .obsidian/workspace-mobile.json .obsidian/workspace.json Languages/Spanish/Spanish.md STEM/AI/Classification/Classification.md STEM/AI/Classification/Decision Trees.md STEM/AI/Classification/Logistic Regression.md STEM/AI/Classification/Random Forest.md STEM/AI/Classification/Supervised/SVM.md STEM/AI/Classification/Supervised/Supervised.md STEM/AI/Neural Networks/Activation Functions.md STEM/AI/Neural Networks/CNN/CNN.md STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/Deep Learning.md STEM/AI/Neural Networks/Properties+Capabilities.md STEM/AI/Neural Networks/SLP/Perceptron Convergence.md
tags | ||
---|---|---|
|
Gaussian Classifier
-
With
T
labelled data $$q_t(i)= \begin{cases} 1 & \text{if class } i \ 0 & \text{otherwise} \end{cases}$$ -
Indicator function
-
Mean parameter
\hat m_i=\frac{\sum_tq_t(i)o_t}{\sum_tq_t(i)}
- Variance parameter
\hat v_i=\frac{\sum_tq_t(i)(o_t-\hat m_i)^2}{\sum_tq_t(i)}
- Distribution weight
- Class prior
P(N_i)
\hat c_i=\frac 1 T \sum_tq_t(i)
\hat \mu_i=\frac{\sum_{t=1}^Tq_t(i)o_t}{\sum_{t=1}^Tq_t(i)}
\hat\sum_i=\frac{\sum_{t=1}^Tq_t(i)(o_t-\mu_i)(o_t-\mu_i)^T}{\sum_{t=1}^Tq_t(i)}
- For K-dimensional