26 lines
648 B
Markdown
26 lines
648 B
Markdown
$$\psi(r,\theta,\phi)=R(r)\cdot Y_{ml}(\theta, \phi)$$
|
|
Wave functions are products of
|
|
Radial Function
|
|
- $R_{n,l}(r)$
|
|
Spherical Harmonic
|
|
- $Y_{ml}(\theta, \phi)$
|
|
|
|
Absolute value of wave function squared gives probability density of finding electron inside differential volume $dV$ centred on $r, \theta, \phi$
|
|
|
|
$$|\psi(r,\theta,\phi)|^2$$
|
|
# Quantum Numbers
|
|
$$n$$
|
|
Principal quantum number
|
|
- 1, 2, 3...
|
|
- ***Electron shell***, electron energy and size of orbital
|
|
$$l$$
|
|
Orbital Angualar Momentum Number
|
|
- $0-(n-1)$
|
|
- ***Shape*** of the orbital
|
|
- 0 = s
|
|
- 1 = p
|
|
- 2 = d
|
|
$$m$$
|
|
Z-component / Magentic of $l$
|
|
- $-l$ to $+l$
|
|
- ***Orientation*** of orbital |