stem/Quantum/Orbitals.md

26 lines
648 B
Markdown
Raw Normal View History

2023-05-20 01:33:56 +01:00
$$\psi(r,\theta,\phi)=R(r)\cdot Y_{ml}(\theta, \phi)$$
Wave functions are products of
Radial Function
- $R_{n,l}(r)$
Spherical Harmonic
- $Y_{ml}(\theta, \phi)$
Absolute value of wave function squared gives probability density of finding electron inside differential volume $dV$ centred on $r, \theta, \phi$
$$|\psi(r,\theta,\phi)|^2$$
# Quantum Numbers
$$n$$
Principal quantum number
- 1, 2, 3...
- ***Electron shell***, electron energy and size of orbital
$$l$$
Orbital Angualar Momentum Number
- $0-(n-1)$
- ***Shape*** of the orbital
- 0 = s
- 1 = p
- 2 = d
$$m$$
Z-component / Magentic of $l$
- $-l$ to $+l$
- ***Orientation*** of orbital