$$\psi(r,\theta,\phi)=R(r)\cdot Y_{ml}(\theta, \phi)$$ Wave functions are products of Radial Function - $R_{n,l}(r)$ Spherical Harmonic - $Y_{ml}(\theta, \phi)$ Absolute value of wave function squared gives probability density of finding electron inside differential volume $dV$ centred on $r, \theta, \phi$ $$|\psi(r,\theta,\phi)|^2$$ # Quantum Numbers $$n$$ Principal quantum number - 1, 2, 3... - ***Electron shell***, electron energy and size of orbital $$l$$ Orbital Angualar Momentum Number - $0-(n-1)$ - ***Shape*** of the orbital - 0 = s - 1 = p - 2 = d $$m$$ Z-component / Magentic of $l$ - $-l$ to $+l$ - ***Orientation*** of orbital