added to report, added resources
BIN
final report/dendrite.jpg
Normal file
After Width: | Height: | Size: 47 KiB |
BIN
final report/hotel-load.png
Normal file
After Width: | Height: | Size: 202 KiB |
@ -1,211 +1,212 @@
|
||||
% Encoding: UTF-8
|
||||
@comment{x-kbibtex-encoding=utf-8}
|
||||
|
||||
@misc{gartner-digitalization,
|
||||
author = {Gartner},
|
||||
title = {Gartner Glossary: Digitalization},
|
||||
url = {https://www.gartner.com/en/information-technology/glossary/digitalization}
|
||||
}
|
||||
|
||||
@Misc{planetsolar,
|
||||
@misc{planetsolar,
|
||||
author = {Jenny Filippetti},
|
||||
groups = {Renewables},
|
||||
howpublished = {Online},
|
||||
month = jul,
|
||||
title = {PlanetSolar: the first solar powered boat around the world},
|
||||
year = {2012},
|
||||
groups = {Renewables},
|
||||
url = {https://www.designboom.com/technology/planetsolar-the-first-solar-powered-boat-around-the-world},
|
||||
urldate = {2020-12-16},
|
||||
year = {2012}
|
||||
}
|
||||
|
||||
@Misc{Radar,
|
||||
@misc{Radar,
|
||||
author = {Shilavadra Bhattacharjee},
|
||||
groups = {Navigation},
|
||||
howpublished = {Online},
|
||||
month = apr,
|
||||
title = {Marine Radars and Their Use in the Shipping Industry},
|
||||
year = {2020},
|
||||
groups = {Navigation},
|
||||
url = {https://www.marineinsight.com/marine-navigation/marine-radars-and-their-use-in-the-shipping-industry},
|
||||
urldate = {2020-12-15},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@Book{sonar-slam,
|
||||
author = {David Ribas and Pere Ridao and Jos{\'e} Neira},
|
||||
@book{sonar-slam,
|
||||
author = {David Ribas and Pere Ridao and José Neira},
|
||||
doi = {10.1007/978-3-642-14040-2},
|
||||
edition = {1},
|
||||
groups = {Navigation},
|
||||
isbn = {978-3-642-14039-6},
|
||||
issn = {1610-7438},
|
||||
month = jan,
|
||||
publisher = {Springer-Verlag Berlin Heidelberg},
|
||||
title = {Underwater SLAM for Structured Environments Using an Imaging Sonar},
|
||||
year = {2010},
|
||||
edition = {1},
|
||||
isbn = {978-3-642-14039-6},
|
||||
month = jan,
|
||||
doi = {10.1007/978-3-642-14040-2},
|
||||
groups = {Navigation},
|
||||
issn = {1610-7438},
|
||||
urldate = {2020-12-15},
|
||||
year = {2010}
|
||||
}
|
||||
|
||||
@Misc{maritime-autonomy.vs.autpilot,
|
||||
@misc{maritime-autonomy.vs.autpilot,
|
||||
author = {{Sea Machines}},
|
||||
groups = {Navigation},
|
||||
howpublished = {Online},
|
||||
month = jan,
|
||||
title = {Marine Autonomy vs. Autopilot: Know the Differences},
|
||||
year = {2020},
|
||||
groups = {Navigation},
|
||||
url = {https://www.maritime-executive.com/features/marine-autonomy-vs-autopilot-know-the-differences-1},
|
||||
urldate = {2020-12-15},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@Article{unmanned-slam,
|
||||
@article{unmanned-slam,
|
||||
author = {Prof R Sutton and Dr S Sharma and Dr T Xao},
|
||||
journal = {Journal of Marine Engineering \& Technology},
|
||||
title = {Adaptive navigation systems for an unmanned surface vehicle},
|
||||
year = {2011},
|
||||
number = {3},
|
||||
pages = {3--20},
|
||||
volume = {10},
|
||||
doi = {10.1080/20464177.2011.11020248},
|
||||
eprint = {https://doi.org/10.1080/20464177.2011.11020248},
|
||||
groups = {Navigation},
|
||||
journal = {Journal of Marine Engineering \& Technology},
|
||||
number = {3},
|
||||
pages = {3–20},
|
||||
publisher = {Taylor \& Francis},
|
||||
title = {Adaptive navigation systems for an unmanned surface vehicle},
|
||||
url = {https://doi.org/10.1080/20464177.2011.11020248},
|
||||
urldate = {2020-12-15},
|
||||
volume = {10},
|
||||
year = {2011}
|
||||
}
|
||||
|
||||
@Misc{dyn-pos,
|
||||
@misc{dyn-pos,
|
||||
author = {{Nautical Institute}},
|
||||
groups = {Navigation},
|
||||
howpublished = {Online},
|
||||
title = {Dynamic Positioning},
|
||||
groups = {Navigation},
|
||||
url = {https://www.nautinst.org/resource-library/technical-library/dynamic-positioning.html},
|
||||
urldate = {2020-12-15},
|
||||
urldate = {2020-12-15}
|
||||
}
|
||||
|
||||
@Misc{dnv-dp,
|
||||
@misc{dnv-dp,
|
||||
author = {{DNV GL}},
|
||||
groups = {Navigation},
|
||||
howpublished = {Online},
|
||||
month = jul,
|
||||
title = {Dynamic positioning vessel design philosophy guidelines},
|
||||
year = {2015},
|
||||
groups = {Navigation},
|
||||
url = {https://rules.dnvgl.com/docs/pdf/DNVGL/RP/2015-07/DNVGL-RP-E306.pdf},
|
||||
urldate = {2020-12-15},
|
||||
year = {2015}
|
||||
}
|
||||
|
||||
@Misc{offshore-dp,
|
||||
@misc{offshore-dp,
|
||||
author = {{Offshore Engineering}},
|
||||
groups = {Navigation},
|
||||
howpublished = {Online},
|
||||
title = {Dynamic Positioning Classes - Redundancy Levels},
|
||||
groups = {Navigation},
|
||||
url = {https://www.offshoreengineering.com/education/dynamic-positioning-dp/dnv-dp-classes-redundancy},
|
||||
urldate = {2020-12-15},
|
||||
urldate = {2020-12-15}
|
||||
}
|
||||
|
||||
@Misc{icom-radio,
|
||||
@misc{icom-radio,
|
||||
author = {{ICOM}},
|
||||
groups = {Communications},
|
||||
howpublished = {Online},
|
||||
title = {A Guide to Marine Radio},
|
||||
groups = {Communications},
|
||||
url = {https://icomuk.co.uk/A-Guide-to-Marine-Radio/3995/169},
|
||||
url = {https://icomuk.co.uk/A-Guide-to-Marine-Radio/3995/169}
|
||||
}
|
||||
|
||||
@Misc{yachtcom-vhf,
|
||||
@misc{yachtcom-vhf,
|
||||
author = {YachtCom},
|
||||
groups = {Communications},
|
||||
howpublished = {Online},
|
||||
title = {Marine VHF Radio},
|
||||
groups = {Communications},
|
||||
url = {http://www.yachtcom.co.uk/comms/vhf},
|
||||
url = {http://www.yachtcom.co.uk/comms/vhf}
|
||||
}
|
||||
|
||||
@Misc{yachtcom-requirements,
|
||||
@misc{yachtcom-requirements,
|
||||
author = {YachtCom},
|
||||
groups = {Communications},
|
||||
howpublished = {Online},
|
||||
title = {Marine Radio Legal Requirements},
|
||||
groups = {Communications},
|
||||
url = {http://www.yachtcom.co.uk/comms/home2020.html},
|
||||
url = {http://www.yachtcom.co.uk/comms/home2020.html}
|
||||
}
|
||||
|
||||
@Misc{marininsight-ais,
|
||||
@misc{marininsight-ais,
|
||||
author = {Shilavadra Bhattacharjee},
|
||||
groups = {Communications, Navigation},
|
||||
howpublished = {Online},
|
||||
month = nov,
|
||||
title = {Automatic Identification System (AIS): Integrating and Identifying Marine Communication Channels},
|
||||
year = {2019},
|
||||
groups = {Communications, Navigation},
|
||||
url = {https://www.marineinsight.com/marine-navigation/automatic-identification-system-ais-integrating-and-identifying-marine-communication-channels},
|
||||
urldate = {2020-12-15},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Article{digisat,
|
||||
@article{digisat,
|
||||
author = {Digisat},
|
||||
title = {Maritime Internet Service},
|
||||
groups = {Communications},
|
||||
url = {https://www.digisat.org/maritime-satellite-internet},
|
||||
title = {Maritime Internet Service},
|
||||
url = {https://www.digisat.org/maritime-satellite-internet}
|
||||
}
|
||||
|
||||
@Misc{deccan-repair,
|
||||
@misc{deccan-repair,
|
||||
author = {Francis D'Sa},
|
||||
groups = {Operations},
|
||||
howpublished = {Online},
|
||||
month = dec,
|
||||
title = {How undersea fibre-optic cables are repaired},
|
||||
year = {2016},
|
||||
groups = {Operations},
|
||||
url = {https://www.deccanchronicle.com/technology/in-other-news/161216/how-undersea-fibre-optic-cables-are-repaired.html},
|
||||
urldate = {2020-12-15},
|
||||
year = {2016}
|
||||
}
|
||||
|
||||
@Misc{subcom-anim,
|
||||
@misc{subcom-anim,
|
||||
author = {Subcom},
|
||||
groups = {Operations},
|
||||
howpublished = {Youtube},
|
||||
month = jan,
|
||||
title = {Repair Animation - Undersea Fiber Optic Cable System},
|
||||
year = {2019},
|
||||
groups = {Operations},
|
||||
url = {https://www.youtube.com/watch?v=r3tPI0qbLaE},
|
||||
urldate = {2020-12-16},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Misc{kis-orca,
|
||||
@misc{kis-orca,
|
||||
author = {KIS-ORCA},
|
||||
title = {Maintenance / Repair Operations},
|
||||
groups = {Operations},
|
||||
keywords = {rank1},
|
||||
ranking = {rank1},
|
||||
url = {https://kis-orca.eu/subsea-cables/maintenance-repair-operations},
|
||||
title = {Maintenance / Repair Operations},
|
||||
url = {https://kis-orca.eu/subsea-cables/maintenance-repair-operations}
|
||||
}
|
||||
|
||||
@Misc{schmidt-subastian,
|
||||
@misc{schmidt-subastian,
|
||||
author = {{Schmidt Ocean Institute}},
|
||||
groups = {ROV},
|
||||
howpublished = {Online},
|
||||
title = {4500 m Remotely Operated Vehicle (ROV SuBastian)},
|
||||
groups = {ROV},
|
||||
url = {https://schmidtocean.org/technology/robotic-platforms/4500-m-remotely-operated-vehicle-rov},
|
||||
urldate = {2020-12-16},
|
||||
urldate = {2020-12-16}
|
||||
}
|
||||
|
||||
@Proceedings{suboptic-grapnel,
|
||||
title = {Advances in Deepwater Cable Maintenance Through New Grapnel Technology},
|
||||
year = {2010},
|
||||
organization = {SubOptic},
|
||||
@proceedings{suboptic-grapnel,
|
||||
author = {Andrew Thomas and Nigel Weaver},
|
||||
groups = {Operations},
|
||||
keywords = {rank1},
|
||||
organization = {SubOptic},
|
||||
ranking = {rank1},
|
||||
title = {Advances in Deepwater Cable Maintenance Through New Grapnel Technology},
|
||||
url = {https://www.suboptic.org/wp-content/uploads/2014/10/273_Poster_MN_08.pdf},
|
||||
year = {2010}
|
||||
}
|
||||
|
||||
@Misc{rov-manual,
|
||||
@misc{rov-manual,
|
||||
author = {{Marine Technology Society ROV Committe}},
|
||||
groups = {ROV},
|
||||
howpublished = {Online},
|
||||
title = {Operational Effectiveness of Unmanned Underwater Systems},
|
||||
groups = {ROV},
|
||||
url = {https://rov.org/wp-content/uploads/2020/06/manual.pdf},
|
||||
urldate = {2020-12-16},
|
||||
urldate = {2020-12-16}
|
||||
}
|
||||
|
||||
@Misc{noaa-depth,
|
||||
@misc{noaa-depth,
|
||||
author = {NOAA},
|
||||
comment = {water depth data},
|
||||
month = aug,
|
||||
title = {ETOPO1 1 Arc-Minute Global Relief Model},
|
||||
year = {2008},
|
||||
comment = {water depth data},
|
||||
url = {https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316},
|
||||
year = {2008}
|
||||
}
|
||||
|
||||
@misc{noaa-depth-google,
|
||||
@ -217,269 +218,269 @@
|
||||
year = {2008}
|
||||
}
|
||||
|
||||
@Misc{first-solar,
|
||||
@misc{first-solar,
|
||||
author = {Jeff Butler},
|
||||
groups = {Renewables},
|
||||
howpublished = {Plugboats},
|
||||
month = may,
|
||||
title = {TBThursday 1975: The world{\rq}s 1st Solarboat},
|
||||
year = {2019},
|
||||
groups = {Renewables},
|
||||
title = {TBThursday 1975: The world’s 1st Solarboat},
|
||||
url = {https://plugboats.com/tbthursday-1975-the-worlds-1st-solarboat},
|
||||
urldate = {2020-12-16},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@InProceedings{cut-and-hold-paper,
|
||||
@inproceedings{cut-and-hold-paper,
|
||||
author = {Y. {Ejiri} and T. {Mizuguchi} and K. {Oto} and Y. {Yamaguchi}},
|
||||
booktitle = {OCEANS 91 Proceedings},
|
||||
title = {Newly Developed Cut And Hold Grapnel},
|
||||
year = {1991},
|
||||
month = oct,
|
||||
pages = {290-295},
|
||||
volume = {1},
|
||||
doi = {10.1109/OCEANS.1991.613945},
|
||||
groups = {Operations},
|
||||
month = oct,
|
||||
pages = {290–295},
|
||||
title = {Newly Developed Cut And Hold Grapnel},
|
||||
url = {https://ieeexplore.ieee.org/document/613945},
|
||||
urldate = {2020-12-16},
|
||||
volume = {1},
|
||||
year = {1991}
|
||||
}
|
||||
|
||||
@Misc{cut-and-hold-eta-product,
|
||||
@misc{cut-and-hold-eta-product,
|
||||
author = {ETA},
|
||||
howpublished = {Online},
|
||||
title = {Cut & Hold Grapnel},
|
||||
groups = {Operations},
|
||||
howpublished = {Online},
|
||||
title = {Cut \& Hold Grapnel},
|
||||
url = {https://www.eta-ltd.com/cut-and-hold-grapnel.html},
|
||||
urldate = {2020-12-15},
|
||||
urldate = {2020-12-15}
|
||||
}
|
||||
|
||||
@Misc{rov-hector-7-datasheet,
|
||||
@misc{rov-hector-7-datasheet,
|
||||
author = {{SIMEC Technologies}},
|
||||
groups = {ROV},
|
||||
howpublished = {Online},
|
||||
month = nov,
|
||||
title = {Hector ROVs},
|
||||
year = {2014},
|
||||
groups = {ROV},
|
||||
url = {http://www.simec-technologies.com/upload/galerie/fiche-hector-2016-50770.pdf},
|
||||
urldate = {2020-12-16},
|
||||
year = {2014}
|
||||
}
|
||||
|
||||
@Misc{auv-hugin-superior-datasheet,
|
||||
@misc{auv-hugin-superior-datasheet,
|
||||
author = {{Kongsberg Maritime}},
|
||||
groups = {AUV},
|
||||
howpublished = {Online},
|
||||
month = dec,
|
||||
title = {HUGIN Superior},
|
||||
year = {2018},
|
||||
groups = {AUV},
|
||||
url = {https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/hugin-superior.pdf},
|
||||
urldate = {2020-12-16},
|
||||
year = {2018}
|
||||
}
|
||||
|
||||
@Misc{smd-qtrencher-600-datasheet,
|
||||
@misc{smd-qtrencher-600-datasheet,
|
||||
author = {SMD},
|
||||
groups = {ROV},
|
||||
howpublished = {Online},
|
||||
month = jan,
|
||||
title = {Q‐TRENCHER 600},
|
||||
year = {2017},
|
||||
groups = {ROV},
|
||||
url = {https://www.smd.co.uk/wp-content/uploads/2017/01/QT600.pdf_0.pdf},
|
||||
urldate = {2020-12-16},
|
||||
year = {2017}
|
||||
}
|
||||
|
||||
@Misc{global-marine-atlas-data-sheet,
|
||||
@misc{global-marine-atlas-data-sheet,
|
||||
author = {{Global Marine}},
|
||||
groups = {ROV},
|
||||
howpublished = {Online},
|
||||
month = dec,
|
||||
title = {Atlas Series},
|
||||
year = {2019},
|
||||
groups = {ROV},
|
||||
url = {https://globalmarine.co.uk/wp-content/uploads/2019/12/atlantisrovdatasheet.pdf},
|
||||
urldate = {2020-12-16},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Misc{ultra-map-cable-damage-causes,
|
||||
@misc{ultra-map-cable-damage-causes,
|
||||
author = {Ultramap},
|
||||
groups = {Operations},
|
||||
howpublished = {Online},
|
||||
month = mar,
|
||||
title = {The Biggest Threat to Subsea Cables},
|
||||
year = {2020},
|
||||
groups = {Operations},
|
||||
url = {https://ultra-map.org/the-biggest-threat-to-subsea-cables/},
|
||||
urldate = {2020-12-16},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@Misc{glboal-marine-st200-datasheet,
|
||||
@misc{glboal-marine-st200-datasheet,
|
||||
author = {{Global Marine}},
|
||||
groups = {ROV},
|
||||
howpublished = {Online},
|
||||
month = dec,
|
||||
title = {ST200 Series},
|
||||
year = {2019},
|
||||
groups = {ROV},
|
||||
url = {https://globalmarine.co.uk/wp-content/uploads/2019/12/st200seriesdatasheet.pdf},
|
||||
urldate = {2020-12-16},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Misc{battery-uni-chemistry-types,
|
||||
@misc{battery-uni-chemistry-types,
|
||||
author = {{Battery University}},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
month = mar,
|
||||
title = {What's the Best Battery?},
|
||||
year = {2017},
|
||||
groups = {Battery},
|
||||
url = {https://batteryuniversity.com/learn/archive/whats_the_best_battery},
|
||||
urldate = {2020-12-19},
|
||||
year = {2017}
|
||||
}
|
||||
|
||||
@Article{lawsone-high-voltage-flow-battery,
|
||||
@article{lawsone-high-voltage-flow-battery,
|
||||
abstract = {Recently, redox-flow batteries (RFBs) are drawing intensive attention due to their advantages of peak shaving, grid flexibility and long life time. All-vanadium RFBs are most widely employed, but the high cost and toxicity hinder their large-scale applications. As potential substitutes, development of organic-based aqueous RFBs is impeded by a lack of electroactive pairs with combination of high cell voltage and sufficient cycle stability. In this work, a novel biomolecule-based aqueous RFB with high performance was successfully fabricated. Lawsone, a renewable biomolecule derived from natural henna, was developed as a stable anolyte. By paring with 4-HO-TEMPO, the as-assembled RFB exhibits a high operating voltage above 1.30 V, which is among the highest records. Meanwhile, the capacity retention rate reaches 99.992\% per cycle. This work highlights the rational utilization of redox-active biomolecule to construct sustainable, low-cost and high-performance aqueous RFBs.},
|
||||
author = {Pengfei Hu and Hao Lan and Xiao Wang and Yun Yang and Xiaoyu Liu and Hua Wang and Lin Guo},
|
||||
journal = {Energy Storage Materials},
|
||||
title = {Renewable-lawsone-based sustainable and high-voltage aqueous flow battery},
|
||||
year = {2019},
|
||||
issn = {2405-8297},
|
||||
pages = {62 - 68},
|
||||
volume = {19},
|
||||
abstract = {Recently, redox-flow batteries (RFBs) are drawing intensive attention due to their advantages of peak shaving, grid flexibility and long life time. All-vanadium RFBs are most widely employed, but the high cost and toxicity hinder their large-scale applications. As potential substitutes, development of organic-based aqueous RFBs is impeded by a lack of electroactive pairs with combination of high cell voltage and sufficient cycle stability. In this work, a novel biomolecule-based aqueous RFB with high performance was successfully fabricated. Lawsone, a renewable biomolecule derived from natural henna, was developed as a stable anolyte. By paring with 4-HO-TEMPO, the as-assembled RFB exhibits a high operating voltage above 1.30 V, which is among the highest records. Meanwhile, the capacity retention rate reaches 99.992% per cycle. This work highlights the rational utilization of redox-active biomolecule to construct sustainable, low-cost and high-performance aqueous RFBs.},
|
||||
doi = {https://doi.org/10.1016/j.ensm.2018.10.017},
|
||||
doi = {10.1016/j.ensm.2018.10.017},
|
||||
groups = {Battery},
|
||||
issn = {2405-8297},
|
||||
journal = {Energy Storage Materials},
|
||||
keywords = {Biomolecule, Renewability, Flow battery, Energy storage, Sustainability},
|
||||
pages = {62–68},
|
||||
title = {Renewable-lawsone-based sustainable and high-voltage aqueous flow battery},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S240582971830895X},
|
||||
urldate = {2020-12-20},
|
||||
volume = {19},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Misc{workingmouse-digitalisation,
|
||||
@misc{workingmouse-digitalisation,
|
||||
author = {David Burkett},
|
||||
howpublished = {Online},
|
||||
month = dec,
|
||||
title = {Digitisation and Digitalisation: What Means What?},
|
||||
year = {2017},
|
||||
url = {https://workingmouse.com.au/innovation/digitisation-digitalisation-digital-transformation},
|
||||
urldate = {2020-12-20},
|
||||
year = {2017}
|
||||
}
|
||||
|
||||
@Misc{strathclyde-fuel-cell-efficiency,
|
||||
@misc{strathclyde-fuel-cell-efficiency,
|
||||
author = {{Green Box Systems Group}},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
month = apr,
|
||||
title = {Fuel Cell Construction and Performance Characterisation},
|
||||
year = {2000},
|
||||
groups = {Battery},
|
||||
organization = {University of Strathclyde},
|
||||
title = {Fuel Cell Construction and Performance Characterisation},
|
||||
url = {http://www.esru.strath.ac.uk/EandE/Web_sites/99-00/bio_fuel_cells/groupproject/library/constructionefficiency/text.htm},
|
||||
urldate = {2020-12-21},
|
||||
year = {2000}
|
||||
}
|
||||
|
||||
@Misc{elec-a2z-fuel-cell-iv,
|
||||
@misc{elec-a2z-fuel-cell-iv,
|
||||
author = {Ahmed Faizan},
|
||||
howpublished = {Online},
|
||||
title = {Fuel Cell: Characteristics Curve & Losses},
|
||||
year = {2018},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
title = {Fuel Cell: Characteristics Curve \& Losses},
|
||||
url = {https://electricala2z.com/renewable-energy/fuel-cell-characteristics-curve-losses/},
|
||||
urldate = {2020-12-21},
|
||||
year = {2018}
|
||||
}
|
||||
|
||||
@TechReport{circular-energy-li-lca,
|
||||
@techreport{circular-energy-li-lca,
|
||||
author = {Hans Eric Melin},
|
||||
groups = {Battery},
|
||||
institution = {Circular Energy Storage},
|
||||
title = {Analysis of the climate impact of lithium-ion batteries and how to measure it},
|
||||
year = {2019},
|
||||
type = {resreport},
|
||||
groups = {Battery},
|
||||
url = {https://www.transportenvironment.org/sites/te/files/publications/2019_11_Analysis_CO2_footprint_lithium-ion_batteries.pdf},
|
||||
urldate = {2020-12-21},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Article{argonne-li-ion-lca,
|
||||
author = {Dai, Qiang and Kelly, Jarod C. and Gaines, Linda and Wang, Michael},
|
||||
journal = {Batteries},
|
||||
title = {Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications},
|
||||
year = {2019},
|
||||
issn = {2313-0105},
|
||||
month = jun,
|
||||
number = {2},
|
||||
volume = {5},
|
||||
@article{argonne-li-ion-lca,
|
||||
abstract = {In light of the increasing penetration of electric vehicles (EVs) in the global vehicle market, understanding the environmental impacts of lithium-ion batteries (LIBs) that characterize the EVs is key to sustainable EV deployment. This study analyzes the cradle-to-gate total energy use, greenhouse gas emissions, SOx, NOx, PM10 emissions, and water consumption associated with current industrial production of lithium nickel manganese cobalt oxide (NMC) batteries, with the battery life cycle analysis (LCA) module in the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model, which was recently updated with primary data collected from large-scale commercial battery material producers and automotive LIB manufacturers. The results show that active cathode material, aluminum, and energy use for cell production are the major contributors to the energy and environmental impacts of NMC batteries. However, this study also notes that the impacts could change significantly, depending on where in the world the battery is produced, and where the materials are sourced. In an effort to harmonize existing LCAs of automotive LIBs and guide future research, this study also lays out differences in life cycle inventories (LCIs) for key battery materials among existing LIB LCA studies, and identifies knowledge gaps.},
|
||||
article-number = {48},
|
||||
author = {Qiang Dai and Jarod C. Kelly and Linda Gaines and Michael Wang},
|
||||
doi = {10.3390/batteries5020048},
|
||||
groups = {Battery},
|
||||
issn = {2313-0105},
|
||||
journal = {Batteries},
|
||||
month = jun,
|
||||
number = {2},
|
||||
title = {Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications},
|
||||
url = {https://www.mdpi.com/2313-0105/5/2/48},
|
||||
urldate = {2020-12-22},
|
||||
volume = {5},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Article{lithium-lca,
|
||||
author = {Matthias Thomitzek and Felipe Cerdas and Sebastian Thiede and Christoph Herrmann},
|
||||
journal = {Procedia CIRP},
|
||||
title = {Cradle-to-Gate Analysis of the Embodied Energy in Lithium Ion Batteries},
|
||||
year = {2019},
|
||||
issn = {2212-8271},
|
||||
note = {26th CIRP Conference on Life Cycle Engineering (LCE) Purdue University, West Lafayette, IN, USA May 7-9, 2019},
|
||||
pages = {304 - 309},
|
||||
volume = {80},
|
||||
@article{lithium-lca,
|
||||
abstract = {Battery technology is increasingly seen as an integral element for future energy and transportation systems. Current developments in industry show an increasing number and size of battery producing factories, thus leading to an immense energy demand not only during the production of battery cells but also raw material extraction. Determining the embodied energy of battery cells allows a comparison with alternative energy systems and assessing the overall energy demand that can contribute to define measures for the improvement of its environmental footprint. The present work provides an analysis of the production of battery cells regarding their embodied energy. In order to quantify the embodied energy, a material and energy flow analysis (MEFA) was adapted towards battery production. The methodology focuses on the manufacturing processes and considers indirect and direct energy consumers, different machine states and existing yield losses along the value chain. The approach was applied to the battery manufacturing in the Battery LabFactory Braunschweig (BLB).},
|
||||
doi = {https://doi.org/10.1016/j.procir.2019.01.099},
|
||||
author = {Matthias Thomitzek and Felipe Cerdas and Sebastian Thiede and Christoph Herrmann},
|
||||
doi = {10.1016/j.procir.2019.01.099},
|
||||
groups = {Battery},
|
||||
issn = {2212-8271},
|
||||
journal = {Procedia CIRP},
|
||||
keywords = {Modelling, Energy, Sustainable development},
|
||||
note = {26th CIRP Conference on Life Cycle Engineering (LCE) Purdue University, West Lafayette, IN, USA May 7-9, 2019},
|
||||
pages = {304–309},
|
||||
title = {Cradle-to-Gate Analysis of the Embodied Energy in Lithium Ion Batteries},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S2212827119301015},
|
||||
urldate = {2020-12-22},
|
||||
volume = {80},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@Misc{wired-lithium,
|
||||
@misc{wired-lithium,
|
||||
author = {Amit Katwala},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
month = aug,
|
||||
title = {The spiralling environmental cost of our lithium battery addiction},
|
||||
year = {2018},
|
||||
groups = {Battery},
|
||||
organization = {Wired},
|
||||
title = {The spiralling environmental cost of our lithium battery addiction},
|
||||
url = {https://www.wired.co.uk/article/lithium-batteries-environment-impact},
|
||||
urldate = {2020-12-22},
|
||||
year = {2018}
|
||||
}
|
||||
|
||||
@Misc{resourceworld-54-lithium,
|
||||
@misc{resourceworld-54-lithium,
|
||||
author = {Ellsworth Dickson},
|
||||
howpublished = {Online},
|
||||
title = {Lithium Triangle},
|
||||
year = {2017},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
organization = {Resource World},
|
||||
title = {Lithium Triangle},
|
||||
url = {https://resourceworld.com/lithium-triangle/},
|
||||
urldate = {2020-12-22},
|
||||
year = {2017}
|
||||
}
|
||||
|
||||
@Misc{ethical-consumer-conflict-materials,
|
||||
@misc{ethical-consumer-conflict-materials,
|
||||
author = {Heather Webb},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
month = apr,
|
||||
title = {Conflict Minerals},
|
||||
year = {2018},
|
||||
groups = {Battery},
|
||||
url = {https://www.ethicalconsumer.org/technology/conflict-minerals},
|
||||
urldate = {2020-12-22},
|
||||
year = {2018}
|
||||
}
|
||||
|
||||
@Misc{batt-uni-discharge-temp,
|
||||
@misc{batt-uni-discharge-temp,
|
||||
author = {{Battery University}},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
month = mar,
|
||||
title = {Discharging at High and Low Temperatures},
|
||||
year = {2017},
|
||||
groups = {Battery},
|
||||
url = {https://batteryuniversity.com/learn/article/discharging_at_high_and_low_temperatures},
|
||||
urldate = {2020-12-23},
|
||||
year = {2017}
|
||||
}
|
||||
|
||||
@Misc{bat-uni-prolong-liion,
|
||||
@misc{bat-uni-prolong-liion,
|
||||
author = {{Battery University}},
|
||||
groups = {Battery},
|
||||
howpublished = {Online},
|
||||
month = mar,
|
||||
title = {How to Prolong Lithium-based Batteries},
|
||||
year = {2017},
|
||||
groups = {Battery},
|
||||
url = {https://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries},
|
||||
urldate = {2020-12-23},
|
||||
year = {2017}
|
||||
}
|
||||
|
||||
@Comment{jabref-meta: databaseType:bibtex;}
|
||||
@comment{jabref-meta: databaseType:bibtex;}
|
||||
|
||||
@Comment{jabref-meta: grouping:
|
||||
@comment{jabref-meta: grouping:
|
||||
0 AllEntriesGroup:;
|
||||
1 StaticGroup:Communications\;0\;0\;0x8a8a8aff\;\;\;;
|
||||
1 StaticGroup:Navigation\;0\;0\;0x8a8a8aff\;\;\;;
|
||||
@ -490,3 +491,169 @@
|
||||
1 StaticGroup:Renewables\;0\;1\;0x8a8a8aff\;\;\;;
|
||||
1 StaticGroup:Battery\;0\;1\;0x8a8a8aff\;\;\;;
|
||||
}
|
||||
|
||||
@misc{eu-current-battery-law,
|
||||
author = {{European Commission}},
|
||||
howpublished = {Online},
|
||||
month = sep,
|
||||
organization = {EU},
|
||||
subtitle = {on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC},
|
||||
title = {DIRECTIVE 2006/66/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL},
|
||||
url = {https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006L0066-20131230&rid=1},
|
||||
urldate = {2020-12-26},
|
||||
year = {2006}
|
||||
}
|
||||
|
||||
@misc{eu-proposed-battery-law,
|
||||
author = {{European Commission}},
|
||||
location = {Online},
|
||||
month = dec,
|
||||
organization = {EU},
|
||||
title = {Proposal for a regulation of the European Parliament and of the council concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020},
|
||||
url = {https://ec.europa.eu/environment/waste/batteries/pdf/Proposal_for_a_Regulation_on_batteries_and_waste_batteries.pdf},
|
||||
urldate = {2020-12-26},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@misc{mse-supplies-dendrite,
|
||||
author = {{MSE Supplies}},
|
||||
howpublished = {Online},
|
||||
month = oct,
|
||||
organization = {MSE Supplies},
|
||||
title = {Source of Detrimental Dendrite Growth in Lithium Batteries Discovered},
|
||||
url = {https://www.msesupplies.com/blogs/news/source-of-detrimental-dendrite-growth-in-lithium-batteries-discovered},
|
||||
urldate = {2020-12-26},
|
||||
year = {2019}
|
||||
}
|
||||
|
||||
@article{SSB-challenges-paper,
|
||||
abstract = {The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model.},
|
||||
author = {Darren H. S. Tan and Abhik Banerjee and Zheng Chen and Ying Shirley Meng},
|
||||
doi = {10.1038/s41565-020-0657-x},
|
||||
issn = {1748-3395},
|
||||
journal = {Nature Nanotechnology},
|
||||
month = mar,
|
||||
number = {3},
|
||||
pages = {170–180},
|
||||
risfield_0_da = {2020/03/01},
|
||||
title = {From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries},
|
||||
url = {https://www.nature.com/articles/s41565-020-0657-x},
|
||||
urldate = {2020-12-26},
|
||||
volume = {15},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@misc{4-ssb-challenges-article,
|
||||
author = {Mark Hutchins},
|
||||
howpublished = {Online},
|
||||
month = mar,
|
||||
organization = {PV Magazine},
|
||||
title = {Four challenges to solid-state battery scale-up},
|
||||
url = {https://www.pv-magazine.com/2020/03/18/four-challenges-to-solid-state-battery-scale-up},
|
||||
urldate = {2020-12-26},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@inproceedings{flow-battery-energy-density,
|
||||
author = {M. R. {Mohamed} and S. M. {Sharkh} and F. C. {Walsh}},
|
||||
booktitle = {2009 IEEE Vehicle Power and Propulsion Conference},
|
||||
doi = {10.1109/VPPC.2009.5289801},
|
||||
month = sep,
|
||||
pages = {551–557},
|
||||
title = {Redox flow batteries for hybrid electric vehicles: Progress and challenges},
|
||||
url = {https://ieeexplore.ieee.org/document/5289801?arnumber=5289801},
|
||||
urldate = {2020-12-26},
|
||||
year = {2009}
|
||||
}
|
||||
|
||||
@misc{washington-lithium-safety,
|
||||
author = {{University of Washington}},
|
||||
howpublished = {Online},
|
||||
month = apr,
|
||||
title = {Lithium Battery Safety},
|
||||
url = {https://www.ehs.washington.edu/system/files/resources/lithium-battery-safety.pdf},
|
||||
urldate = {2020-12-27},
|
||||
year = {2018}
|
||||
}
|
||||
|
||||
@article{li-ion-degradation,
|
||||
abstract = {Lithium-ion batteries are popular energy storage devices for a wide variety of applications. As batteries have transitioned from being used in portable electronics to being used in longer lifetime and more safety-critical applications, such as electric vehicles (EVs) and aircraft, the cost of failure has become more significant both in terms of liability as well as the cost of replacement. Failure modes, mechanisms, and effects analysis (FMMEA) provides a rigorous framework to define the ways in which lithium-ion batteries can fail, how failures can be detected, what processes cause the failures, and how to model failures for failure prediction. This enables a physics-of-failure (PoF) approach to battery life prediction that takes into account life cycle conditions, multiple failure mechanisms, and their effects on battery health and safety. This paper presents an FMMEA of battery failure and describes how this process enables improved battery failure mitigation control strategies.},
|
||||
author = {Christopher Hendricks and Nick Williard and Sony Mathew and Michael Pecht},
|
||||
doi = {10.1016/j.jpowsour.2015.07.100},
|
||||
issn = {0378-7753},
|
||||
journal = {Journal of Power Sources},
|
||||
keywords = {Lithium-ion battery, Failure modes, mechanisms, and effects analysis, Physics-of-failure, Battery reliability},
|
||||
pages = {113–120},
|
||||
title = {A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S0378775315301233},
|
||||
urldate = {2020-12-27},
|
||||
volume = {297},
|
||||
year = {2015}
|
||||
}
|
||||
|
||||
@misc{batt-uni-bms,
|
||||
author = {{Battery University}},
|
||||
howpublished = {Online},
|
||||
month = mar,
|
||||
title = {Battery Management System (BMS)},
|
||||
url = {https://batteryuniversity.com/index.php/learn/article/how_to_measure_state_of_charge},
|
||||
urldate = {2020-12-27},
|
||||
year = {2017}
|
||||
}
|
||||
|
||||
@misc{tophat-tms,
|
||||
author = {SMD},
|
||||
howpublished = {Online},
|
||||
month = dec,
|
||||
title = {Work Class ROVs},
|
||||
url = {https://www.smd.co.uk/wp-content/uploads/2016/12/SMD_2685_ROV_Brochure_pps_low_res.pdf},
|
||||
urldate = {2020-12-28},
|
||||
year = {2016}
|
||||
}
|
||||
|
||||
@misc{splash-zone,
|
||||
author = {{Mark Tool \& Rubber}},
|
||||
howpublished = {Online},
|
||||
month = dec,
|
||||
title = {What is the Splash Zone and How to Protect It?},
|
||||
url = {https://www.marktool.com/what-is-the-splash-zone-and-how-to-protect-it},
|
||||
urldate = {2020-12-28},
|
||||
year = {2012}
|
||||
}
|
||||
|
||||
@misc{rov-tms-splash-zone,
|
||||
author = {Claudio Paschoa},
|
||||
howpublished = {Online},
|
||||
month = jan,
|
||||
organization = {Marine Technology News},
|
||||
title = {Understanding ROV Launch and Recovery Systems – Part 2},
|
||||
url = {https://www.marinetechnologynews.com/blogs/understanding-rov-launch-and-recovery-systems-e28093-part-2-700532},
|
||||
urldate = {2020-12-28},
|
||||
year = {2015}
|
||||
}
|
||||
|
||||
@misc{18650-ecolux,
|
||||
author = {Ecolux},
|
||||
howpublished = {Online},
|
||||
title = {18650 Batteries},
|
||||
url = {https://www.ecoluxshopdirect.co.uk/by-size/18650-batteries},
|
||||
urldate = {2020-12-28},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@misc{18650.uk,
|
||||
author = {18650.uk},
|
||||
title = {18650 Batteries},
|
||||
url = {https://18650.uk/shop/18650-batteries},
|
||||
urldate = {2020-12-28},
|
||||
year = {2020}
|
||||
}
|
||||
|
||||
@misc{18350-fogstar,
|
||||
author = {{Fogstar Batteries}},
|
||||
date = {2020},
|
||||
title = {18650 Batteries},
|
||||
url = {https://www.fogstar.co.uk/collections/batteries/size_18650},
|
||||
urldate = {2020-12-28}
|
||||
}
|
||||
|
||||
|
BIN
final report/tophat.png
Normal file
After Width: | Height: | Size: 468 KiB |
BIN
maths/Dyn. Pos. Sea State 7.png
Normal file
After Width: | Height: | Size: 192 KiB |
BIN
maths/Dynamic Positioning Sea State 7.png
Normal file
After Width: | Height: | Size: 218 KiB |
BIN
maths/final_report_res/dynpos1.fig
Normal file
BIN
maths/final_report_res/dynpos1.png
Normal file
After Width: | Height: | Size: 199 KiB |
BIN
maths/final_report_res/dynpos2.fig
Normal file
BIN
maths/final_report_res/dynpos2.png
Normal file
After Width: | Height: | Size: 208 KiB |
BIN
maths/final_report_res/dynpos3.fig
Normal file
BIN
maths/final_report_res/dynpos3.png
Normal file
After Width: | Height: | Size: 229 KiB |
BIN
maths/final_report_res/mission1.fig
Normal file
BIN
maths/final_report_res/mission1.png
Normal file
After Width: | Height: | Size: 326 KiB |
BIN
maths/final_report_res/mission2.fig
Normal file
BIN
maths/final_report_res/mission2.png
Normal file
After Width: | Height: | Size: 336 KiB |
BIN
maths/final_report_res/mission3.fig
Normal file
BIN
maths/final_report_res/mission3.png
Normal file
After Width: | Height: | Size: 323 KiB |
BIN
maths/final_report_res/mission4.fig
Normal file
BIN
maths/final_report_res/mission4.png
Normal file
After Width: | Height: | Size: 333 KiB |
BIN
maths/final_report_res/mission5.fig
Normal file
BIN
maths/final_report_res/mission5.png
Normal file
After Width: | Height: | Size: 330 KiB |
BIN
maths/final_report_res/mission6.fig
Normal file
BIN
maths/final_report_res/mission6.png
Normal file
After Width: | Height: | Size: 337 KiB |
BIN
maths/mission.png
Normal file
After Width: | Height: | Size: 327 KiB |
@ -109,7 +109,7 @@ figure('Renderer', 'painters', 'Position', [10 10 1000 800])
|
||||
|
||||
line_width = 1;
|
||||
subplot(3, 1, 1);
|
||||
%sgtitle('Mission Power Usage');
|
||||
sgtitle('Mission Power Usage');
|
||||
% sgtitle(TITLE);
|
||||
hold on;
|
||||
grid on;
|
||||
@ -124,7 +124,7 @@ plot(x, power_out / 1e6, 'r', 'LineWidth', 1);
|
||||
|
||||
% yline(P_IN / 1e6, '--m', 'LineWidth', line_width * 0.5);
|
||||
|
||||
legend('P In', 'P Out');
|
||||
legend('Power In', 'Power Out');
|
||||
ylabel('Power (MW)')
|
||||
xlim([0 inf])
|
||||
ylim([0 ceil(max(max(power_in/1e6), max(power_out/1e6)))])
|
||||
|
@ -27,7 +27,7 @@ P_IN_LOAD = 0.3; % most efficient load percent
|
||||
%%%%% DP (SS7)
|
||||
MAX_P_OUT = 3842e3; % W
|
||||
MIN_P_OUT = 362e3; % W
|
||||
TITLE = 'Dyn. Pos. Sea State 7';
|
||||
TITLE = 'Dynamic Positioning Sea State 7';
|
||||
SIMULATION_DAYS = 2; % days
|
||||
|
||||
cable_drum = get_extra_p(SIMULATION_DAYS*day_to_seconds, 3*hours_to_seconds, 1.5*hours_to_seconds, 946.26e3);
|
||||
@ -84,7 +84,7 @@ figure('Renderer', 'painters', 'Position', [10 10 1000 800])
|
||||
|
||||
line_width = 1;
|
||||
subplot(3, 1, 1);
|
||||
%sgtitle(TITLE);
|
||||
sgtitle(TITLE);
|
||||
hold on;
|
||||
grid on;
|
||||
|
||||
@ -98,7 +98,7 @@ plot(x, power_out / 1e6, 'r', 'LineWidth', 1);
|
||||
|
||||
%yline(p_av / 1e6, '--m', 'LineWidth', line_width * 0.5);
|
||||
|
||||
legend('P In', 'P Out', 'Max P Out', 'Min P Out', 'Average P In');
|
||||
legend('Power In', 'Power Out', 'Max P Out', 'Min P Out', 'Average P In');
|
||||
ylabel('Power (MW)')
|
||||
xlim([0 inf])
|
||||
% ylim([0 ceil(max(max(power_in/1e6), max(power_out/1e6)))])
|
||||
|
@ -30,9 +30,12 @@ batt_capacity = CELL_TOTAL * cell_capacity * cell_voltage / 1e3; % Wh
|
||||
|
||||
% P_IN = MAX_P_IN * P_IN_LOAD; % W, efficient load
|
||||
P_IN = (MIN_P_OUT + MAX_P_OUT) / 2; % W, Average power out
|
||||
P_IN_EFF = 200e3; % W per cell of efficiency
|
||||
|
||||
sim_seconds = SIMULATION_DAYS * 24 * 60 * 60;
|
||||
|
||||
twenty_minutes = 20 * 60; % s
|
||||
|
||||
%%%%%%% unit conversions
|
||||
batt_capacity = batt_capacity * 3600; % J
|
||||
|
||||
@ -138,16 +141,20 @@ for SECOND=1:sim_seconds
|
||||
|
||||
batt_percent = (battery_level(SECOND)/batt_capacity);
|
||||
|
||||
if mod(SECOND, twenty_minutes) == 0
|
||||
% BATTERY LOW, INCREASE POWER IN
|
||||
% if battery_net < 0 && batt_percent < BATT_WARN_LEVEL
|
||||
% if battery_net < 0 && batt_percent < BATT_WARN_LEVEL
|
||||
if batt_percent < BATT_WARN_LEVEL
|
||||
percent_diff = (BATT_WARN_LEVEL - batt_percent) / BATT_WARN_LEVEL;
|
||||
current_p_in = min(current_p_in + percent_diff * P_IN_INTERVAL, MAX_P_IN);
|
||||
% percent_diff = (BATT_WARN_LEVEL - batt_percent) / BATT_WARN_LEVEL;
|
||||
%current_p_in = min(current_p_in + percent_diff * P_IN_INTERVAL, MAX_P_IN);
|
||||
current_p_in = current_p_in + P_IN_EFF;
|
||||
|
||||
% BATTERY HIGH, DECREASE POWER IN
|
||||
elseif batt_percent > BATT_FULL_LEVEL && batt_percent < 1
|
||||
percent_diff = 1 - (abs(BATT_FULL_LEVEL - batt_percent) / (1 - BATT_FULL_LEVEL));
|
||||
current_p_in = max(current_p_in - percent_diff * P_IN_INTERVAL, MIN_P_IN);
|
||||
elseif batt_percent > BATT_FULL_LEVEL
|
||||
% percent_diff = 1 - (abs(BATT_FULL_LEVEL - batt_percent) / (1 - BATT_FULL_LEVEL));
|
||||
% current_p_in = max(current_p_in - percent_diff * P_IN_INTERVAL, MIN_P_IN);
|
||||
|
||||
current_p_in = max(current_p_in - P_IN_EFF, 0);
|
||||
|
||||
% NEITHER, RELAX TO EFFICIENT STATE
|
||||
else
|
||||
@ -158,6 +165,7 @@ for SECOND=1:sim_seconds
|
||||
current_p_in = max(current_p_in - P_IN_INTERVAL, P_IN);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
BIN
maths/res/Dyn. Pos. Sea State 7.1.png
Normal file
After Width: | Height: | Size: 239 KiB |
BIN
maths/res/Dyn. Pos. Sea State 7.2.png
Normal file
After Width: | Height: | Size: 232 KiB |
BIN
maths/res/Dyn. Pos. Sea State 7.3.png
Normal file
After Width: | Height: | Size: 231 KiB |
BIN
maths/res/Dyn. Pos. Sea State 7.4.png
Normal file
After Width: | Height: | Size: 245 KiB |
BIN
maths/res/Outbound Steaming1.png
Normal file
After Width: | Height: | Size: 229 KiB |
BIN
maths/res/Outbound Steaming2.png
Normal file
After Width: | Height: | Size: 228 KiB |
BIN
maths/res/dynpos.png
Normal file
After Width: | Height: | Size: 71 KiB |
BIN
maths/res/dynpos2.png
Normal file
After Width: | Height: | Size: 80 KiB |
BIN
maths/res/dynpos3.png
Normal file
After Width: | Height: | Size: 76 KiB |
BIN
maths/res/dynpos4.png
Normal file
After Width: | Height: | Size: 84 KiB |
BIN
maths/res/dynpos5.png
Normal file
After Width: | Height: | Size: 74 KiB |
BIN
maths/res/mission.png
Normal file
After Width: | Height: | Size: 194 KiB |
BIN
maths/res/mission2.png
Normal file
After Width: | Height: | Size: 199 KiB |
BIN
maths/res/mission2annotated.png
Normal file
After Width: | Height: | Size: 228 KiB |
BIN
maths/res/mission3.png
Normal file
After Width: | Height: | Size: 196 KiB |
BIN
maths/res/mission4.png
Normal file
After Width: | Height: | Size: 223 KiB |
BIN
maths/res/mission5.png
Normal file
After Width: | Height: | Size: 208 KiB |
BIN
maths/res/mission6.png
Normal file
After Width: | Height: | Size: 809 KiB |
BIN
maths/res/outbound.png
Normal file
After Width: | Height: | Size: 81 KiB |
BIN
maths/res/outbound2.png
Normal file
After Width: | Height: | Size: 81 KiB |
BIN
maths/res/outbound3.png
Normal file
After Width: | Height: | Size: 81 KiB |