updated battery numbers, added sustainability and LCA work
This commit is contained in:
parent
819408d749
commit
495c6a58d3
BIN
final report/battery-breakdown-mj-kwh.png
Normal file
BIN
final report/battery-breakdown-mj-kwh.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 5.1 KiB |
BIN
final report/cell-breakdown-mj-kwh.png
Normal file
BIN
final report/cell-breakdown-mj-kwh.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
BIN
final report/pack-breakdown-mj-kwh.png
Normal file
BIN
final report/pack-breakdown-mj-kwh.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 6.9 KiB |
@ -387,6 +387,74 @@
|
||||
urldate = {2020-12-21},
|
||||
}
|
||||
|
||||
@Article{argonne-li-ion-lca,
|
||||
author = {Dai, Qiang and Kelly, Jarod C. and Gaines, Linda and Wang, Michael},
|
||||
journal = {Batteries},
|
||||
title = {Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications},
|
||||
year = {2019},
|
||||
issn = {2313-0105},
|
||||
month = jun,
|
||||
number = {2},
|
||||
volume = {5},
|
||||
abstract = {In light of the increasing penetration of electric vehicles (EVs) in the global vehicle market, understanding the environmental impacts of lithium-ion batteries (LIBs) that characterize the EVs is key to sustainable EV deployment. This study analyzes the cradle-to-gate total energy use, greenhouse gas emissions, SOx, NOx, PM10 emissions, and water consumption associated with current industrial production of lithium nickel manganese cobalt oxide (NMC) batteries, with the battery life cycle analysis (LCA) module in the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model, which was recently updated with primary data collected from large-scale commercial battery material producers and automotive LIB manufacturers. The results show that active cathode material, aluminum, and energy use for cell production are the major contributors to the energy and environmental impacts of NMC batteries. However, this study also notes that the impacts could change significantly, depending on where in the world the battery is produced, and where the materials are sourced. In an effort to harmonize existing LCAs of automotive LIBs and guide future research, this study also lays out differences in life cycle inventories (LCIs) for key battery materials among existing LIB LCA studies, and identifies knowledge gaps.},
|
||||
article-number = {48},
|
||||
doi = {10.3390/batteries5020048},
|
||||
groups = {Battery},
|
||||
url = {https://www.mdpi.com/2313-0105/5/2/48},
|
||||
urldate = {2020-12-22},
|
||||
}
|
||||
|
||||
@Article{lithium-lca,
|
||||
author = {Matthias Thomitzek and Felipe Cerdas and Sebastian Thiede and Christoph Herrmann},
|
||||
journal = {Procedia CIRP},
|
||||
title = {Cradle-to-Gate Analysis of the Embodied Energy in Lithium Ion Batteries},
|
||||
year = {2019},
|
||||
issn = {2212-8271},
|
||||
note = {26th CIRP Conference on Life Cycle Engineering (LCE) Purdue University, West Lafayette, IN, USA May 7-9, 2019},
|
||||
pages = {304 - 309},
|
||||
volume = {80},
|
||||
abstract = {Battery technology is increasingly seen as an integral element for future energy and transportation systems. Current developments in industry show an increasing number and size of battery producing factories, thus leading to an immense energy demand not only during the production of battery cells but also raw material extraction. Determining the embodied energy of battery cells allows a comparison with alternative energy systems and assessing the overall energy demand that can contribute to define measures for the improvement of its environmental footprint. The present work provides an analysis of the production of battery cells regarding their embodied energy. In order to quantify the embodied energy, a material and energy flow analysis (MEFA) was adapted towards battery production. The methodology focuses on the manufacturing processes and considers indirect and direct energy consumers, different machine states and existing yield losses along the value chain. The approach was applied to the battery manufacturing in the Battery LabFactory Braunschweig (BLB).},
|
||||
doi = {https://doi.org/10.1016/j.procir.2019.01.099},
|
||||
groups = {Battery},
|
||||
keywords = {Modelling, Energy, Sustainable development},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S2212827119301015},
|
||||
urldate = {2020-12-22},
|
||||
}
|
||||
|
||||
@Misc{wired-lithium,
|
||||
author = {Amit Katwala},
|
||||
howpublished = {Online},
|
||||
month = aug,
|
||||
title = {The spiralling environmental cost of our lithium battery addiction},
|
||||
year = {2018},
|
||||
groups = {Battery},
|
||||
organization = {Wired},
|
||||
url = {https://www.wired.co.uk/article/lithium-batteries-environment-impact},
|
||||
urldate = {2020-12-22},
|
||||
}
|
||||
|
||||
@Misc{resourceworld-54-lithium,
|
||||
author = {Ellsworth Dickson},
|
||||
howpublished = {Online},
|
||||
title = {Lithium Triangle},
|
||||
year = {2017},
|
||||
groups = {Battery},
|
||||
organization = {Resource World},
|
||||
url = {https://resourceworld.com/lithium-triangle/},
|
||||
urldate = {2020-12-22},
|
||||
}
|
||||
|
||||
@Misc{ethical-consumer-conflict-materials,
|
||||
author = {Heather Webb},
|
||||
howpublished = {Online},
|
||||
month = apr,
|
||||
title = {Conflict Minerals},
|
||||
year = {2018},
|
||||
groups = {Battery},
|
||||
url = {https://www.ethicalconsumer.org/technology/conflict-minerals},
|
||||
urldate = {2020-12-22},
|
||||
}
|
||||
|
||||
@Comment{jabref-meta: databaseType:bibtex;}
|
||||
|
||||
@Comment{jabref-meta: grouping:
|
||||
|
@ -1132,6 +1132,13 @@ Flow battery, solid state
|
||||
|
||||
\begin_layout Subsection
|
||||
Proposed Solution
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:Proposed-UUV-Battery-Solution"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -1154,6 +1161,235 @@ For this project, Lithium was proposed as the solution for a vessel energy
|
||||
result of it's critical importance to consumer electronics and electric
|
||||
vehicles.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
There are many standard Lithium-ion standard cell formats from flat pouches
|
||||
and prismatic cells designed for mobile phones to the more standard cylindrical
|
||||
cells.
|
||||
For these applications, cylindrical cells are a suitable choice where compactne
|
||||
ss and thinness are not critical design parameters.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The 18650 cell is a mature cylindrical cell with good reliability records
|
||||
and high rates of use among medical equipment, drones and electric vehicles;
|
||||
Tesla uses battery packs composed of 18650 cells.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As with other battery cells, the voltage is a characteristic of the chemistry,
|
||||
for Lithium this is around 3.6 V.
|
||||
The key parameters that vary amongst producers are the capacity and charge/disc
|
||||
harge C-rates.
|
||||
In order to estimate the cell specification for use in this project, the
|
||||
existing range of available cells was taken into account.
|
||||
Typical, mid-range 18650 cells can range between 2500 - 3000 mAh capacity;
|
||||
the highest energy density can currently extend this to 3500 - 3600 mAh.
|
||||
As technology improves, it is expected that by the point of construction
|
||||
this higher range will be more accessible and reliable, as such 3500 mAh
|
||||
is used as the cell capacity for further calculations.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The 18650 cell specifications being used herein are described in table
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "tab:18650-specs"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float table
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\noindent
|
||||
\align center
|
||||
\begin_inset Tabular
|
||||
<lyxtabular version="3" rows="6" columns="2">
|
||||
<features tabularvalignment="middle">
|
||||
<column alignment="center" valignment="top">
|
||||
<column alignment="center" valignment="top">
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" bottomline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\series bold
|
||||
18650 Cell
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Voltage, (
|
||||
\begin_inset Formula $V$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
3.6
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Capacity, (
|
||||
\begin_inset Formula $mAh$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
3500
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Ideal Discharge C-Rate, (
|
||||
\begin_inset Formula $h^{-1}$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
1
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Ideal Charge C-Rate, (
|
||||
\begin_inset Formula $h^{-1}$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
0.5
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
<row>
|
||||
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Weight, (
|
||||
\begin_inset Formula $g$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
|
||||
\begin_inset Text
|
||||
|
||||
\begin_layout Plain Layout
|
||||
48
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
</cell>
|
||||
</row>
|
||||
</lyxtabular>
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
General specifications for 18650 Lithium-ion cells
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "tab:18650-specs"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
@ -1190,7 +1426,7 @@ noprefix "false"
|
||||
; to summarise, the amount of required cells was calculated from the required
|
||||
power draw of the battery and the characteristics of the 18650 Lithium
|
||||
cell being used.
|
||||
The result was 237,169 cells.
|
||||
The result was 193,600 cells.
|
||||
These cells are arranged into a matrix of parallel and series blocks, all
|
||||
the series blocks connected in parallel must be of the same length
|
||||
\begin_inset Flex TODO Note (Margin)
|
||||
@ -1292,14 +1528,141 @@ Meta analysis
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The life-cycle analysis of Lithium-ion batteries is a complicated process
|
||||
for a couple of reasons.
|
||||
As repeatedly stated, Li-ion batteries have been critical to the explosion
|
||||
of mobile consumer electronics; the development of the fabrication process
|
||||
and the associated environmental effects has changed dramatically.
|
||||
Additionally, as a global product the values for various greenhouse gas
|
||||
(GHG) and other emissions is contingent on the country within which the
|
||||
cells are made.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Both the cumulative energy demand (CED) and the GHG emissions are considered.
|
||||
Cumulative energy demand allows
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Cradle-to-Gate
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\noindent
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename battery-breakdown-mj-kwh.png
|
||||
lyxscale 50
|
||||
width 75col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
CED breakdown for a NCM11 battery pack (MJ/kWh),
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand citep
|
||||
key "circular-energy-li-lca,argonne-li-ion-lca"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:battery-ced-breakdown"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\noindent
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename cell-breakdown-mj-kwh.png
|
||||
lyxscale 50
|
||||
width 75col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
CED breakdown for a NCM11 cell without BMS or pack (MJ/kWh),
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand citep
|
||||
key "circular-energy-li-lca,argonne-li-ion-lca"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:cell-ced-breakdown"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
End-of-Life
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
There are two main approaches to sustainable end-of-life processing for
|
||||
Lithium-ion processing, second-use and recycling.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Summary
|
||||
\end_layout
|
||||
@ -1310,8 +1673,110 @@ Sustainability
|
||||
|
||||
\begin_layout Standard
|
||||
Although many of the important environmental aspects of sustainability are
|
||||
covered by a life-cycle analysis, there are other elements to sustainability
|
||||
as previously described.
|
||||
covered by a life-cycle analysis, there are other elements to consider
|
||||
regarding sustainability.
|
||||
One of the most important aspects is a social one, that of the mining of
|
||||
Lithium and Cobalt.
|
||||
The majority of both minerals are located in two areas of the global south
|
||||
where resource shortages and unethical mining practices lead to dangerous
|
||||
and damaging results both socially and environmentally.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Lithium
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The majority of global Lithium deposits can be found in an area of South
|
||||
America referred to as the
|
||||
\emph on
|
||||
Lithium Triangle
|
||||
\emph default
|
||||
covering areas of Chile, Argentina and Bolivia.
|
||||
The area has been estimated to constitute between 54 and 70% of the world's
|
||||
deposits,
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand citep
|
||||
key "wired-lithium,resourceworld-54-lithium"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The extraction process is a water-intensive process in an area already
|
||||
without an adequate supply; in Chile this is as much as 65% of the area's
|
||||
water or 500,000 gallons per tonne of Lithium,
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand citep
|
||||
key "wired-lithium"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The processing can also include dangerous chemicals including various acids
|
||||
\begin_inset Flex TODO Note (Margin)
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Leaking into water supply Tibet
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Cobalt
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Over half of the world's Cobalt deposits are found in the Democratic Republic
|
||||
of Congo,
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand citep
|
||||
key "wired-lithium,ethical-consumer-conflict-materials"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Although not widely officially designated as such, there are efforts to
|
||||
class Cobalt as a conflict mineral as it's importance grows to one of the
|
||||
most notorious countries for other such minerals including Gold and Tungsten.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
20% of the exported cobalt has been estimated to come from artisanal mines,
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand citep
|
||||
key "ethical-consumer-conflict-materials"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Flex TODO Note (inline)
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Child workers
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
@ -1320,7 +1785,20 @@ Although many of the important environmental aspects of sustainability are
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Lithium and cobalt mining
|
||||
Overworked, bad conditions, no PPE, lung disease
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Flex TODO Note (inline)
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
DRC political implications
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
@ -2506,7 +2984,9 @@ smart buoys
|
||||
\emph default
|
||||
around the expected working area of the UUV.
|
||||
The use of buoys as opposed to beacons on the sea-floor significantly decreases
|
||||
the preparation and clean-up mission phases.
|
||||
the preparation and clean-up mission phases.75% would likely be an overestimatio
|
||||
n for an overall average usage, 10 hours would be a minimum range for the
|
||||
vehicle
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -2602,6 +3082,84 @@ Control
|
||||
Power
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The ability to operate autonomously without an umbilical cord implies that
|
||||
the UUV must have an onboard power supply.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As mentioned, much of the vehicle specification is being inherited from
|
||||
existing ROV technology and this would include expected operating power.
|
||||
The expansion of the UUV's capabilities to include autonomous operation
|
||||
would primarily be completed through software and not significantly alter
|
||||
the required power.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
300 kW was used as the required max power to calculate the energy storage
|
||||
capabilities, an operating time of 10 hours was also defined.
|
||||
An average draw of 50% max power was used to calculate 1.5 MWh of required
|
||||
storage.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Flex TODO Note (Margin)
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
It is proposed that the UUV battery be removable and that two are available.
|
||||
This will provide redundancy as well as providing flexibility during missions.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The previously described 18650 cells (section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "subsec:Proposed-UUV-Battery-Solution"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
) will be used for the UUV's battery pack, this will allow a single process
|
||||
for sourcing and end-of-life processing and increase efficiency by utilising
|
||||
the economy of scale.
|
||||
As such, the previously mentioned notes on sustainability including processes
|
||||
for second-use and recycling would apply to the UUVs battery pack.
|
||||
\begin_inset Flex TODO Note (Margin)
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
As described in the sustainability, operating at scale has allowed the carbon
|
||||
cost of cells to go down, this is the same thing
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Lithium-polymer batteries have found usage in AUVs as a result of their
|
||||
lighter weight than Lithium-ion batteries.
|
||||
While this will increase efficiency, it is proposed that the use of a single
|
||||
supply chain will improve sustainability, a key parameter for this project.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The cell voltage (3.6 V) and capacity (3.5 Ah) were multiplied for 12.6 Wh
|
||||
of power capacity per cell.
|
||||
This would require 119,048 cells to meet the capacity requirements.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The battery system constitutes an extra 5,700 kg of extra weight for the
|
||||
UUV, it is important that the battery be removable for tethered operation
|
||||
in order to increase efficiency when independent operation is not required.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Financials
|
||||
\end_layout
|
||||
|
@ -10,7 +10,7 @@ close all;clear all;clc;
|
||||
|
||||
INTEGER_CELLS = true;
|
||||
P_OUT_INCLUDES_P_IN = true; % subtract power in from power out
|
||||
% assumes that battery and generation coupled for connection to P out
|
||||
% assumes that batter17y and generation coupled for connection to P out
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%% Parameters
|
||||
@ -18,7 +18,8 @@ P_OUT_INCLUDES_P_IN = true; % subtract power in from power out
|
||||
|
||||
%%%%%%% 18650 Cell
|
||||
cell_voltage = 3.6; % V
|
||||
cell_capacity = 2850; % mAh
|
||||
% cell_capacity = 2850; % mAh
|
||||
cell_capacity = 3500; % mAh
|
||||
cell_dis_c = 1; % 1/h
|
||||
cell_charge_c = 0.5; % 1/h
|
||||
|
||||
@ -26,7 +27,8 @@ cell_weight = 48; % g
|
||||
cell_dia = 18.4; % mm
|
||||
cell_height = 65; % mm
|
||||
|
||||
cell_price = 6; % £
|
||||
%cell_price = 6; % £
|
||||
cell_price = 5; % £
|
||||
|
||||
cell_emb_c = 117.5; % kgCO2eq/kWh
|
||||
cell_rec_emb_c = 15; % kgCO2eq/kWh
|
||||
|
@ -109,7 +109,7 @@ figure('Renderer', 'painters', 'Position', [10 10 1000 800])
|
||||
|
||||
line_width = 1;
|
||||
subplot(3, 1, 1);
|
||||
sgtitle('Mission Power Usage');
|
||||
%sgtitle('Mission Power Usage');
|
||||
% sgtitle(TITLE);
|
||||
hold on;
|
||||
grid on;
|
||||
|
@ -84,19 +84,19 @@ figure('Renderer', 'painters', 'Position', [10 10 1000 800])
|
||||
|
||||
line_width = 1;
|
||||
subplot(3, 1, 1);
|
||||
sgtitle(TITLE);
|
||||
%sgtitle(TITLE);
|
||||
hold on;
|
||||
grid on;
|
||||
|
||||
plot(x, power_in / 1e6, 'g', 'LineWidth', 2);
|
||||
plot(x, power_out / 1e6, 'r', 'LineWidth', 1);
|
||||
|
||||
max_line = yline(MAX_P_OUT / 1e6, '-c', 'LineWidth', line_width * 0.75);
|
||||
min_line = yline(MIN_P_OUT / 1e6, '-c', 'LineWidth', line_width * 0.75);
|
||||
max_line.Alpha = 0.5;
|
||||
min_line.Alpha = 0.5;
|
||||
%max_line = yline(MAX_P_OUT / 1e6, '-c', 'LineWidth', line_width * 0.75);
|
||||
%min_line = yline(MIN_P_OUT / 1e6, '-c', 'LineWidth', line_width * 0.75);
|
||||
%max_line.Alpha = 0.5;
|
||||
%min_line.Alpha = 0.5;
|
||||
|
||||
yline(p_av / 1e6, '--m', 'LineWidth', line_width * 0.5);
|
||||
%yline(p_av / 1e6, '--m', 'LineWidth', line_width * 0.5);
|
||||
|
||||
legend('P In', 'P Out', 'Max P Out', 'Min P Out', 'Average P In');
|
||||
ylabel('Power (MW)')
|
||||
|
@ -6,7 +6,7 @@ function [power_in,battery_level,power_out,unused_energy,unavailable_energy, bat
|
||||
%% Specs
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
CELL_TOTAL = 159201; % from battery script
|
||||
CELL_TOTAL = 193600; % from battery script
|
||||
|
||||
CHARGE_EFF = 0.8;
|
||||
DISCHARGE_EFF = 0.8;
|
||||
@ -15,7 +15,8 @@ P_IN_INTERVAL = ( 200e3/(5*60) ) * 0.75; % W amount that gen power increases
|
||||
P_OUT_INTERVAL = 1e4; % W amount that load can varies by randomly
|
||||
|
||||
cell_voltage = 3.6; % V
|
||||
cell_capacity = 2850; % mAh
|
||||
% cell_capacity = 2850; % mAh
|
||||
cell_capacity = 3500; % mAh
|
||||
cell_dis_c = 1; % 1/h
|
||||
cell_charge_c = 0.5; % 1/h
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user