DIGITS-CNN/cars/architecture-investigations/best/caffe_output.log

4567 lines
360 KiB
Plaintext
Raw Permalink Normal View History

2021-04-29 00:53:46 +01:00
I0428 17:05:02.593752 8468 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210428-170501-06d1/solver.prototxt
I0428 17:05:02.593987 8468 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string).
W0428 17:05:02.593997 8468 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type.
I0428 17:05:02.594100 8468 caffe.cpp:218] Using GPUs 3
I0428 17:05:02.623229 8468 caffe.cpp:223] GPU 3: GeForce GTX 1080 Ti
I0428 17:05:03.071666 8468 solver.cpp:44] Initializing solver from parameters:
test_iter: 51
test_interval: 102
base_lr: 0.01
display: 12
max_iter: 10200
lr_policy: "exp"
gamma: 0.99980193
momentum: 0.9
weight_decay: 0.0001
snapshot: 102
snapshot_prefix: "snapshot"
solver_mode: GPU
device_id: 3
net: "train_val.prototxt"
train_state {
level: 0
stage: ""
}
type: "SGD"
I0428 17:05:03.072530 8468 solver.cpp:87] Creating training net from net file: train_val.prototxt
I0428 17:05:03.073154 8468 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data
I0428 17:05:03.073172 8468 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0428 17:05:03.073321 8468 net.cpp:51] Initializing net from parameters:
state {
phase: TRAIN
level: 0
stage: ""
}
layer {
name: "train-data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "/mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/mean.binaryproto"
}
data_param {
source: "/mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/train_db"
batch_size: 128
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 7
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 7
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 7
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 7
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 196
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
I0428 17:05:03.073421 8468 layer_factory.hpp:77] Creating layer train-data
I0428 17:05:03.078701 8468 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/train_db
I0428 17:05:03.078907 8468 net.cpp:84] Creating Layer train-data
I0428 17:05:03.078924 8468 net.cpp:380] train-data -> data
I0428 17:05:03.078950 8468 net.cpp:380] train-data -> label
I0428 17:05:03.078964 8468 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/mean.binaryproto
I0428 17:05:03.086239 8468 data_layer.cpp:45] output data size: 128,3,227,227
I0428 17:05:03.269457 8468 net.cpp:122] Setting up train-data
I0428 17:05:03.269486 8468 net.cpp:129] Top shape: 128 3 227 227 (19787136)
I0428 17:05:03.269493 8468 net.cpp:129] Top shape: 128 (128)
I0428 17:05:03.269497 8468 net.cpp:137] Memory required for data: 79149056
I0428 17:05:03.269510 8468 layer_factory.hpp:77] Creating layer conv1
I0428 17:05:03.269533 8468 net.cpp:84] Creating Layer conv1
I0428 17:05:03.269541 8468 net.cpp:406] conv1 <- data
I0428 17:05:03.269556 8468 net.cpp:380] conv1 -> conv1
I0428 17:05:04.033461 8468 net.cpp:122] Setting up conv1
I0428 17:05:04.033485 8468 net.cpp:129] Top shape: 128 96 56 56 (38535168)
I0428 17:05:04.033490 8468 net.cpp:137] Memory required for data: 233289728
I0428 17:05:04.033512 8468 layer_factory.hpp:77] Creating layer relu1
I0428 17:05:04.033524 8468 net.cpp:84] Creating Layer relu1
I0428 17:05:04.033529 8468 net.cpp:406] relu1 <- conv1
I0428 17:05:04.033535 8468 net.cpp:367] relu1 -> conv1 (in-place)
I0428 17:05:04.033846 8468 net.cpp:122] Setting up relu1
I0428 17:05:04.033856 8468 net.cpp:129] Top shape: 128 96 56 56 (38535168)
I0428 17:05:04.033860 8468 net.cpp:137] Memory required for data: 387430400
I0428 17:05:04.033864 8468 layer_factory.hpp:77] Creating layer norm1
I0428 17:05:04.033874 8468 net.cpp:84] Creating Layer norm1
I0428 17:05:04.033877 8468 net.cpp:406] norm1 <- conv1
I0428 17:05:04.033905 8468 net.cpp:380] norm1 -> norm1
I0428 17:05:04.034390 8468 net.cpp:122] Setting up norm1
I0428 17:05:04.034401 8468 net.cpp:129] Top shape: 128 96 56 56 (38535168)
I0428 17:05:04.034405 8468 net.cpp:137] Memory required for data: 541571072
I0428 17:05:04.034409 8468 layer_factory.hpp:77] Creating layer pool1
I0428 17:05:04.034417 8468 net.cpp:84] Creating Layer pool1
I0428 17:05:04.034421 8468 net.cpp:406] pool1 <- norm1
I0428 17:05:04.034427 8468 net.cpp:380] pool1 -> pool1
I0428 17:05:04.034466 8468 net.cpp:122] Setting up pool1
I0428 17:05:04.034472 8468 net.cpp:129] Top shape: 128 96 28 28 (9633792)
I0428 17:05:04.034476 8468 net.cpp:137] Memory required for data: 580106240
I0428 17:05:04.034479 8468 layer_factory.hpp:77] Creating layer conv2
I0428 17:05:04.034489 8468 net.cpp:84] Creating Layer conv2
I0428 17:05:04.034493 8468 net.cpp:406] conv2 <- pool1
I0428 17:05:04.034498 8468 net.cpp:380] conv2 -> conv2
I0428 17:05:04.044618 8468 net.cpp:122] Setting up conv2
I0428 17:05:04.044638 8468 net.cpp:129] Top shape: 128 256 26 26 (22151168)
I0428 17:05:04.044642 8468 net.cpp:137] Memory required for data: 668710912
I0428 17:05:04.044653 8468 layer_factory.hpp:77] Creating layer relu2
I0428 17:05:04.044661 8468 net.cpp:84] Creating Layer relu2
I0428 17:05:04.044667 8468 net.cpp:406] relu2 <- conv2
I0428 17:05:04.044672 8468 net.cpp:367] relu2 -> conv2 (in-place)
I0428 17:05:04.045120 8468 net.cpp:122] Setting up relu2
I0428 17:05:04.045131 8468 net.cpp:129] Top shape: 128 256 26 26 (22151168)
I0428 17:05:04.045135 8468 net.cpp:137] Memory required for data: 757315584
I0428 17:05:04.045138 8468 layer_factory.hpp:77] Creating layer norm2
I0428 17:05:04.045146 8468 net.cpp:84] Creating Layer norm2
I0428 17:05:04.045150 8468 net.cpp:406] norm2 <- conv2
I0428 17:05:04.045156 8468 net.cpp:380] norm2 -> norm2
I0428 17:05:04.045470 8468 net.cpp:122] Setting up norm2
I0428 17:05:04.045480 8468 net.cpp:129] Top shape: 128 256 26 26 (22151168)
I0428 17:05:04.045483 8468 net.cpp:137] Memory required for data: 845920256
I0428 17:05:04.045487 8468 layer_factory.hpp:77] Creating layer pool2
I0428 17:05:04.045495 8468 net.cpp:84] Creating Layer pool2
I0428 17:05:04.045500 8468 net.cpp:406] pool2 <- norm2
I0428 17:05:04.045504 8468 net.cpp:380] pool2 -> pool2
I0428 17:05:04.045534 8468 net.cpp:122] Setting up pool2
I0428 17:05:04.045539 8468 net.cpp:129] Top shape: 128 256 13 13 (5537792)
I0428 17:05:04.045543 8468 net.cpp:137] Memory required for data: 868071424
I0428 17:05:04.045547 8468 layer_factory.hpp:77] Creating layer conv3
I0428 17:05:04.045557 8468 net.cpp:84] Creating Layer conv3
I0428 17:05:04.045560 8468 net.cpp:406] conv3 <- pool2
I0428 17:05:04.045565 8468 net.cpp:380] conv3 -> conv3
I0428 17:05:04.073928 8468 net.cpp:122] Setting up conv3
I0428 17:05:04.073949 8468 net.cpp:129] Top shape: 128 384 11 11 (5947392)
I0428 17:05:04.073953 8468 net.cpp:137] Memory required for data: 891860992
I0428 17:05:04.073966 8468 layer_factory.hpp:77] Creating layer relu3
I0428 17:05:04.073973 8468 net.cpp:84] Creating Layer relu3
I0428 17:05:04.073978 8468 net.cpp:406] relu3 <- conv3
I0428 17:05:04.073984 8468 net.cpp:367] relu3 -> conv3 (in-place)
I0428 17:05:04.074456 8468 net.cpp:122] Setting up relu3
I0428 17:05:04.074466 8468 net.cpp:129] Top shape: 128 384 11 11 (5947392)
I0428 17:05:04.074470 8468 net.cpp:137] Memory required for data: 915650560
I0428 17:05:04.074473 8468 layer_factory.hpp:77] Creating layer conv4
I0428 17:05:04.074486 8468 net.cpp:84] Creating Layer conv4
I0428 17:05:04.074489 8468 net.cpp:406] conv4 <- conv3
I0428 17:05:04.074496 8468 net.cpp:380] conv4 -> conv4
I0428 17:05:04.116331 8468 net.cpp:122] Setting up conv4
I0428 17:05:04.116351 8468 net.cpp:129] Top shape: 128 384 7 7 (2408448)
I0428 17:05:04.116356 8468 net.cpp:137] Memory required for data: 925284352
I0428 17:05:04.116366 8468 layer_factory.hpp:77] Creating layer relu4
I0428 17:05:04.116376 8468 net.cpp:84] Creating Layer relu4
I0428 17:05:04.116401 8468 net.cpp:406] relu4 <- conv4
I0428 17:05:04.116408 8468 net.cpp:367] relu4 -> conv4 (in-place)
I0428 17:05:04.116804 8468 net.cpp:122] Setting up relu4
I0428 17:05:04.116816 8468 net.cpp:129] Top shape: 128 384 7 7 (2408448)
I0428 17:05:04.116820 8468 net.cpp:137] Memory required for data: 934918144
I0428 17:05:04.116825 8468 layer_factory.hpp:77] Creating layer conv5
I0428 17:05:04.116837 8468 net.cpp:84] Creating Layer conv5
I0428 17:05:04.116842 8468 net.cpp:406] conv5 <- conv4
I0428 17:05:04.116848 8468 net.cpp:380] conv5 -> conv5
I0428 17:05:04.149544 8468 net.cpp:122] Setting up conv5
I0428 17:05:04.149565 8468 net.cpp:129] Top shape: 128 256 3 3 (294912)
I0428 17:05:04.149570 8468 net.cpp:137] Memory required for data: 936097792
I0428 17:05:04.149585 8468 layer_factory.hpp:77] Creating layer relu5
I0428 17:05:04.149595 8468 net.cpp:84] Creating Layer relu5
I0428 17:05:04.149600 8468 net.cpp:406] relu5 <- conv5
I0428 17:05:04.149608 8468 net.cpp:367] relu5 -> conv5 (in-place)
I0428 17:05:04.150146 8468 net.cpp:122] Setting up relu5
I0428 17:05:04.150156 8468 net.cpp:129] Top shape: 128 256 3 3 (294912)
I0428 17:05:04.150161 8468 net.cpp:137] Memory required for data: 937277440
I0428 17:05:04.150166 8468 layer_factory.hpp:77] Creating layer pool5
I0428 17:05:04.150175 8468 net.cpp:84] Creating Layer pool5
I0428 17:05:04.150179 8468 net.cpp:406] pool5 <- conv5
I0428 17:05:04.150185 8468 net.cpp:380] pool5 -> pool5
I0428 17:05:04.150225 8468 net.cpp:122] Setting up pool5
I0428 17:05:04.150233 8468 net.cpp:129] Top shape: 128 256 1 1 (32768)
I0428 17:05:04.150236 8468 net.cpp:137] Memory required for data: 937408512
I0428 17:05:04.150240 8468 layer_factory.hpp:77] Creating layer fc6
I0428 17:05:04.150251 8468 net.cpp:84] Creating Layer fc6
I0428 17:05:04.150255 8468 net.cpp:406] fc6 <- pool5
I0428 17:05:04.150264 8468 net.cpp:380] fc6 -> fc6
I0428 17:05:04.152822 8468 net.cpp:122] Setting up fc6
I0428 17:05:04.152829 8468 net.cpp:129] Top shape: 128 1024 (131072)
I0428 17:05:04.152833 8468 net.cpp:137] Memory required for data: 937932800
I0428 17:05:04.152840 8468 layer_factory.hpp:77] Creating layer relu6
I0428 17:05:04.152848 8468 net.cpp:84] Creating Layer relu6
I0428 17:05:04.152851 8468 net.cpp:406] relu6 <- fc6
I0428 17:05:04.152858 8468 net.cpp:367] relu6 -> fc6 (in-place)
I0428 17:05:04.153388 8468 net.cpp:122] Setting up relu6
I0428 17:05:04.153398 8468 net.cpp:129] Top shape: 128 1024 (131072)
I0428 17:05:04.153401 8468 net.cpp:137] Memory required for data: 938457088
I0428 17:05:04.153405 8468 layer_factory.hpp:77] Creating layer drop6
I0428 17:05:04.153412 8468 net.cpp:84] Creating Layer drop6
I0428 17:05:04.153417 8468 net.cpp:406] drop6 <- fc6
I0428 17:05:04.153424 8468 net.cpp:367] drop6 -> fc6 (in-place)
I0428 17:05:04.153450 8468 net.cpp:122] Setting up drop6
I0428 17:05:04.153458 8468 net.cpp:129] Top shape: 128 1024 (131072)
I0428 17:05:04.153462 8468 net.cpp:137] Memory required for data: 938981376
I0428 17:05:04.153466 8468 layer_factory.hpp:77] Creating layer fc7
I0428 17:05:04.153473 8468 net.cpp:84] Creating Layer fc7
I0428 17:05:04.153477 8468 net.cpp:406] fc7 <- fc6
I0428 17:05:04.153486 8468 net.cpp:380] fc7 -> fc7
I0428 17:05:04.164450 8468 net.cpp:122] Setting up fc7
I0428 17:05:04.164466 8468 net.cpp:129] Top shape: 128 1024 (131072)
I0428 17:05:04.164470 8468 net.cpp:137] Memory required for data: 939505664
I0428 17:05:04.164479 8468 layer_factory.hpp:77] Creating layer relu7
I0428 17:05:04.164508 8468 net.cpp:84] Creating Layer relu7
I0428 17:05:04.164515 8468 net.cpp:406] relu7 <- fc7
I0428 17:05:04.164521 8468 net.cpp:367] relu7 -> fc7 (in-place)
I0428 17:05:04.191749 8468 net.cpp:122] Setting up relu7
I0428 17:05:04.191767 8468 net.cpp:129] Top shape: 128 1024 (131072)
I0428 17:05:04.191771 8468 net.cpp:137] Memory required for data: 940029952
I0428 17:05:04.191776 8468 layer_factory.hpp:77] Creating layer drop7
I0428 17:05:04.191785 8468 net.cpp:84] Creating Layer drop7
I0428 17:05:04.191790 8468 net.cpp:406] drop7 <- fc7
I0428 17:05:04.191819 8468 net.cpp:367] drop7 -> fc7 (in-place)
I0428 17:05:04.191862 8468 net.cpp:122] Setting up drop7
I0428 17:05:04.191869 8468 net.cpp:129] Top shape: 128 1024 (131072)
I0428 17:05:04.191874 8468 net.cpp:137] Memory required for data: 940554240
I0428 17:05:04.191876 8468 layer_factory.hpp:77] Creating layer fc8
I0428 17:05:04.191884 8468 net.cpp:84] Creating Layer fc8
I0428 17:05:04.191888 8468 net.cpp:406] fc8 <- fc7
I0428 17:05:04.191895 8468 net.cpp:380] fc8 -> fc8
I0428 17:05:04.194640 8468 net.cpp:122] Setting up fc8
I0428 17:05:04.194651 8468 net.cpp:129] Top shape: 128 196 (25088)
I0428 17:05:04.194655 8468 net.cpp:137] Memory required for data: 940654592
I0428 17:05:04.194664 8468 layer_factory.hpp:77] Creating layer loss
I0428 17:05:04.194670 8468 net.cpp:84] Creating Layer loss
I0428 17:05:04.194674 8468 net.cpp:406] loss <- fc8
I0428 17:05:04.194679 8468 net.cpp:406] loss <- label
I0428 17:05:04.194686 8468 net.cpp:380] loss -> loss
I0428 17:05:04.194695 8468 layer_factory.hpp:77] Creating layer loss
I0428 17:05:04.195420 8468 net.cpp:122] Setting up loss
I0428 17:05:04.195430 8468 net.cpp:129] Top shape: (1)
I0428 17:05:04.195432 8468 net.cpp:132] with loss weight 1
I0428 17:05:04.195451 8468 net.cpp:137] Memory required for data: 940654596
I0428 17:05:04.195456 8468 net.cpp:198] loss needs backward computation.
I0428 17:05:04.195462 8468 net.cpp:198] fc8 needs backward computation.
I0428 17:05:04.195466 8468 net.cpp:198] drop7 needs backward computation.
I0428 17:05:04.195470 8468 net.cpp:198] relu7 needs backward computation.
I0428 17:05:04.195473 8468 net.cpp:198] fc7 needs backward computation.
I0428 17:05:04.195477 8468 net.cpp:198] drop6 needs backward computation.
I0428 17:05:04.195480 8468 net.cpp:198] relu6 needs backward computation.
I0428 17:05:04.195484 8468 net.cpp:198] fc6 needs backward computation.
I0428 17:05:04.195488 8468 net.cpp:198] pool5 needs backward computation.
I0428 17:05:04.195492 8468 net.cpp:198] relu5 needs backward computation.
I0428 17:05:04.195497 8468 net.cpp:198] conv5 needs backward computation.
I0428 17:05:04.195499 8468 net.cpp:198] relu4 needs backward computation.
I0428 17:05:04.195503 8468 net.cpp:198] conv4 needs backward computation.
I0428 17:05:04.195508 8468 net.cpp:198] relu3 needs backward computation.
I0428 17:05:04.195510 8468 net.cpp:198] conv3 needs backward computation.
I0428 17:05:04.195514 8468 net.cpp:198] pool2 needs backward computation.
I0428 17:05:04.195518 8468 net.cpp:198] norm2 needs backward computation.
I0428 17:05:04.195521 8468 net.cpp:198] relu2 needs backward computation.
I0428 17:05:04.195525 8468 net.cpp:198] conv2 needs backward computation.
I0428 17:05:04.195529 8468 net.cpp:198] pool1 needs backward computation.
I0428 17:05:04.195533 8468 net.cpp:198] norm1 needs backward computation.
I0428 17:05:04.195536 8468 net.cpp:198] relu1 needs backward computation.
I0428 17:05:04.195540 8468 net.cpp:198] conv1 needs backward computation.
I0428 17:05:04.195544 8468 net.cpp:200] train-data does not need backward computation.
I0428 17:05:04.195549 8468 net.cpp:242] This network produces output loss
I0428 17:05:04.195564 8468 net.cpp:255] Network initialization done.
I0428 17:05:04.196044 8468 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt
I0428 17:05:04.196076 8468 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data
I0428 17:05:04.196228 8468 net.cpp:51] Initializing net from parameters:
state {
phase: TEST
}
layer {
name: "val-data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
crop_size: 227
mean_file: "/mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/mean.binaryproto"
}
data_param {
source: "/mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/val_db"
batch_size: 32
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 7
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 7
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 7
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 7
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 196
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
I0428 17:05:04.196333 8468 layer_factory.hpp:77] Creating layer val-data
I0428 17:05:04.197921 8468 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/val_db
I0428 17:05:04.198091 8468 net.cpp:84] Creating Layer val-data
I0428 17:05:04.198101 8468 net.cpp:380] val-data -> data
I0428 17:05:04.198110 8468 net.cpp:380] val-data -> label
I0428 17:05:04.198117 8468 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-3/digits/jobs/20210421-230320-902c/mean.binaryproto
I0428 17:05:04.201850 8468 data_layer.cpp:45] output data size: 32,3,227,227
I0428 17:05:04.247722 8468 net.cpp:122] Setting up val-data
I0428 17:05:04.247745 8468 net.cpp:129] Top shape: 32 3 227 227 (4946784)
I0428 17:05:04.247750 8468 net.cpp:129] Top shape: 32 (32)
I0428 17:05:04.247754 8468 net.cpp:137] Memory required for data: 19787264
I0428 17:05:04.247761 8468 layer_factory.hpp:77] Creating layer label_val-data_1_split
I0428 17:05:04.247774 8468 net.cpp:84] Creating Layer label_val-data_1_split
I0428 17:05:04.247778 8468 net.cpp:406] label_val-data_1_split <- label
I0428 17:05:04.247786 8468 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0
I0428 17:05:04.247797 8468 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1
I0428 17:05:04.247851 8468 net.cpp:122] Setting up label_val-data_1_split
I0428 17:05:04.247857 8468 net.cpp:129] Top shape: 32 (32)
I0428 17:05:04.247860 8468 net.cpp:129] Top shape: 32 (32)
I0428 17:05:04.247864 8468 net.cpp:137] Memory required for data: 19787520
I0428 17:05:04.247867 8468 layer_factory.hpp:77] Creating layer conv1
I0428 17:05:04.247879 8468 net.cpp:84] Creating Layer conv1
I0428 17:05:04.247884 8468 net.cpp:406] conv1 <- data
I0428 17:05:04.247889 8468 net.cpp:380] conv1 -> conv1
I0428 17:05:04.254287 8468 net.cpp:122] Setting up conv1
I0428 17:05:04.254302 8468 net.cpp:129] Top shape: 32 96 56 56 (9633792)
I0428 17:05:04.254307 8468 net.cpp:137] Memory required for data: 58322688
I0428 17:05:04.254317 8468 layer_factory.hpp:77] Creating layer relu1
I0428 17:05:04.254325 8468 net.cpp:84] Creating Layer relu1
I0428 17:05:04.254329 8468 net.cpp:406] relu1 <- conv1
I0428 17:05:04.254334 8468 net.cpp:367] relu1 -> conv1 (in-place)
I0428 17:05:04.254647 8468 net.cpp:122] Setting up relu1
I0428 17:05:04.254655 8468 net.cpp:129] Top shape: 32 96 56 56 (9633792)
I0428 17:05:04.254659 8468 net.cpp:137] Memory required for data: 96857856
I0428 17:05:04.254663 8468 layer_factory.hpp:77] Creating layer norm1
I0428 17:05:04.254673 8468 net.cpp:84] Creating Layer norm1
I0428 17:05:04.254675 8468 net.cpp:406] norm1 <- conv1
I0428 17:05:04.254681 8468 net.cpp:380] norm1 -> norm1
I0428 17:05:04.255165 8468 net.cpp:122] Setting up norm1
I0428 17:05:04.255175 8468 net.cpp:129] Top shape: 32 96 56 56 (9633792)
I0428 17:05:04.255179 8468 net.cpp:137] Memory required for data: 135393024
I0428 17:05:04.255183 8468 layer_factory.hpp:77] Creating layer pool1
I0428 17:05:04.255190 8468 net.cpp:84] Creating Layer pool1
I0428 17:05:04.255194 8468 net.cpp:406] pool1 <- norm1
I0428 17:05:04.255199 8468 net.cpp:380] pool1 -> pool1
I0428 17:05:04.255232 8468 net.cpp:122] Setting up pool1
I0428 17:05:04.255239 8468 net.cpp:129] Top shape: 32 96 28 28 (2408448)
I0428 17:05:04.255241 8468 net.cpp:137] Memory required for data: 145026816
I0428 17:05:04.255245 8468 layer_factory.hpp:77] Creating layer conv2
I0428 17:05:04.255254 8468 net.cpp:84] Creating Layer conv2
I0428 17:05:04.255257 8468 net.cpp:406] conv2 <- pool1
I0428 17:05:04.255287 8468 net.cpp:380] conv2 -> conv2
I0428 17:05:04.267192 8468 net.cpp:122] Setting up conv2
I0428 17:05:04.267213 8468 net.cpp:129] Top shape: 32 256 26 26 (5537792)
I0428 17:05:04.267217 8468 net.cpp:137] Memory required for data: 167177984
I0428 17:05:04.267230 8468 layer_factory.hpp:77] Creating layer relu2
I0428 17:05:04.267239 8468 net.cpp:84] Creating Layer relu2
I0428 17:05:04.267243 8468 net.cpp:406] relu2 <- conv2
I0428 17:05:04.267249 8468 net.cpp:367] relu2 -> conv2 (in-place)
I0428 17:05:04.267784 8468 net.cpp:122] Setting up relu2
I0428 17:05:04.267794 8468 net.cpp:129] Top shape: 32 256 26 26 (5537792)
I0428 17:05:04.267797 8468 net.cpp:137] Memory required for data: 189329152
I0428 17:05:04.267802 8468 layer_factory.hpp:77] Creating layer norm2
I0428 17:05:04.267812 8468 net.cpp:84] Creating Layer norm2
I0428 17:05:04.267817 8468 net.cpp:406] norm2 <- conv2
I0428 17:05:04.267822 8468 net.cpp:380] norm2 -> norm2
I0428 17:05:04.268384 8468 net.cpp:122] Setting up norm2
I0428 17:05:04.268394 8468 net.cpp:129] Top shape: 32 256 26 26 (5537792)
I0428 17:05:04.268399 8468 net.cpp:137] Memory required for data: 211480320
I0428 17:05:04.268402 8468 layer_factory.hpp:77] Creating layer pool2
I0428 17:05:04.268409 8468 net.cpp:84] Creating Layer pool2
I0428 17:05:04.268414 8468 net.cpp:406] pool2 <- norm2
I0428 17:05:04.268420 8468 net.cpp:380] pool2 -> pool2
I0428 17:05:04.268452 8468 net.cpp:122] Setting up pool2
I0428 17:05:04.268460 8468 net.cpp:129] Top shape: 32 256 13 13 (1384448)
I0428 17:05:04.268463 8468 net.cpp:137] Memory required for data: 217018112
I0428 17:05:04.268466 8468 layer_factory.hpp:77] Creating layer conv3
I0428 17:05:04.268478 8468 net.cpp:84] Creating Layer conv3
I0428 17:05:04.268482 8468 net.cpp:406] conv3 <- pool2
I0428 17:05:04.268515 8468 net.cpp:380] conv3 -> conv3
I0428 17:05:04.297034 8468 net.cpp:122] Setting up conv3
I0428 17:05:04.297055 8468 net.cpp:129] Top shape: 32 384 11 11 (1486848)
I0428 17:05:04.297060 8468 net.cpp:137] Memory required for data: 222965504
I0428 17:05:04.297071 8468 layer_factory.hpp:77] Creating layer relu3
I0428 17:05:04.297083 8468 net.cpp:84] Creating Layer relu3
I0428 17:05:04.297088 8468 net.cpp:406] relu3 <- conv3
I0428 17:05:04.297096 8468 net.cpp:367] relu3 -> conv3 (in-place)
I0428 17:05:04.297641 8468 net.cpp:122] Setting up relu3
I0428 17:05:04.297652 8468 net.cpp:129] Top shape: 32 384 11 11 (1486848)
I0428 17:05:04.297655 8468 net.cpp:137] Memory required for data: 228912896
I0428 17:05:04.297659 8468 layer_factory.hpp:77] Creating layer conv4
I0428 17:05:04.297672 8468 net.cpp:84] Creating Layer conv4
I0428 17:05:04.297677 8468 net.cpp:406] conv4 <- conv3
I0428 17:05:04.297684 8468 net.cpp:380] conv4 -> conv4
I0428 17:05:04.338552 8468 net.cpp:122] Setting up conv4
I0428 17:05:04.338572 8468 net.cpp:129] Top shape: 32 384 7 7 (602112)
I0428 17:05:04.338577 8468 net.cpp:137] Memory required for data: 231321344
I0428 17:05:04.338587 8468 layer_factory.hpp:77] Creating layer relu4
I0428 17:05:04.338595 8468 net.cpp:84] Creating Layer relu4
I0428 17:05:04.338601 8468 net.cpp:406] relu4 <- conv4
I0428 17:05:04.338611 8468 net.cpp:367] relu4 -> conv4 (in-place)
I0428 17:05:04.339000 8468 net.cpp:122] Setting up relu4
I0428 17:05:04.339010 8468 net.cpp:129] Top shape: 32 384 7 7 (602112)
I0428 17:05:04.339015 8468 net.cpp:137] Memory required for data: 233729792
I0428 17:05:04.339020 8468 layer_factory.hpp:77] Creating layer conv5
I0428 17:05:04.339031 8468 net.cpp:84] Creating Layer conv5
I0428 17:05:04.339035 8468 net.cpp:406] conv5 <- conv4
I0428 17:05:04.339042 8468 net.cpp:380] conv5 -> conv5
I0428 17:05:04.369298 8468 net.cpp:122] Setting up conv5
I0428 17:05:04.369318 8468 net.cpp:129] Top shape: 32 256 3 3 (73728)
I0428 17:05:04.369323 8468 net.cpp:137] Memory required for data: 234024704
I0428 17:05:04.369339 8468 layer_factory.hpp:77] Creating layer relu5
I0428 17:05:04.369350 8468 net.cpp:84] Creating Layer relu5
I0428 17:05:04.369356 8468 net.cpp:406] relu5 <- conv5
I0428 17:05:04.369385 8468 net.cpp:367] relu5 -> conv5 (in-place)
I0428 17:05:04.371474 8468 net.cpp:122] Setting up relu5
I0428 17:05:04.371484 8468 net.cpp:129] Top shape: 32 256 3 3 (73728)
I0428 17:05:04.371490 8468 net.cpp:137] Memory required for data: 234319616
I0428 17:05:04.371496 8468 layer_factory.hpp:77] Creating layer pool5
I0428 17:05:04.371507 8468 net.cpp:84] Creating Layer pool5
I0428 17:05:04.371512 8468 net.cpp:406] pool5 <- conv5
I0428 17:05:04.371521 8468 net.cpp:380] pool5 -> pool5
I0428 17:05:04.371563 8468 net.cpp:122] Setting up pool5
I0428 17:05:04.371570 8468 net.cpp:129] Top shape: 32 256 1 1 (8192)
I0428 17:05:04.371574 8468 net.cpp:137] Memory required for data: 234352384
I0428 17:05:04.371579 8468 layer_factory.hpp:77] Creating layer fc6
I0428 17:05:04.371588 8468 net.cpp:84] Creating Layer fc6
I0428 17:05:04.371592 8468 net.cpp:406] fc6 <- pool5
I0428 17:05:04.371600 8468 net.cpp:380] fc6 -> fc6
I0428 17:05:04.374823 8468 net.cpp:122] Setting up fc6
I0428 17:05:04.374835 8468 net.cpp:129] Top shape: 32 1024 (32768)
I0428 17:05:04.374840 8468 net.cpp:137] Memory required for data: 234483456
I0428 17:05:04.374850 8468 layer_factory.hpp:77] Creating layer relu6
I0428 17:05:04.374857 8468 net.cpp:84] Creating Layer relu6
I0428 17:05:04.374863 8468 net.cpp:406] relu6 <- fc6
I0428 17:05:04.374869 8468 net.cpp:367] relu6 -> fc6 (in-place)
I0428 17:05:04.376003 8468 net.cpp:122] Setting up relu6
I0428 17:05:04.376014 8468 net.cpp:129] Top shape: 32 1024 (32768)
I0428 17:05:04.376019 8468 net.cpp:137] Memory required for data: 234614528
I0428 17:05:04.376024 8468 layer_factory.hpp:77] Creating layer drop6
I0428 17:05:04.376034 8468 net.cpp:84] Creating Layer drop6
I0428 17:05:04.376039 8468 net.cpp:406] drop6 <- fc6
I0428 17:05:04.376045 8468 net.cpp:367] drop6 -> fc6 (in-place)
I0428 17:05:04.376073 8468 net.cpp:122] Setting up drop6
I0428 17:05:04.376080 8468 net.cpp:129] Top shape: 32 1024 (32768)
I0428 17:05:04.376083 8468 net.cpp:137] Memory required for data: 234745600
I0428 17:05:04.376088 8468 layer_factory.hpp:77] Creating layer fc7
I0428 17:05:04.376096 8468 net.cpp:84] Creating Layer fc7
I0428 17:05:04.376101 8468 net.cpp:406] fc7 <- fc6
I0428 17:05:04.376108 8468 net.cpp:380] fc7 -> fc7
I0428 17:05:04.388618 8468 net.cpp:122] Setting up fc7
I0428 17:05:04.388635 8468 net.cpp:129] Top shape: 32 1024 (32768)
I0428 17:05:04.388639 8468 net.cpp:137] Memory required for data: 234876672
I0428 17:05:04.388648 8468 layer_factory.hpp:77] Creating layer relu7
I0428 17:05:04.388657 8468 net.cpp:84] Creating Layer relu7
I0428 17:05:04.388662 8468 net.cpp:406] relu7 <- fc7
I0428 17:05:04.388670 8468 net.cpp:367] relu7 -> fc7 (in-place)
I0428 17:05:04.389096 8468 net.cpp:122] Setting up relu7
I0428 17:05:04.389106 8468 net.cpp:129] Top shape: 32 1024 (32768)
I0428 17:05:04.389109 8468 net.cpp:137] Memory required for data: 235007744
I0428 17:05:04.389115 8468 layer_factory.hpp:77] Creating layer drop7
I0428 17:05:04.389122 8468 net.cpp:84] Creating Layer drop7
I0428 17:05:04.389127 8468 net.cpp:406] drop7 <- fc7
I0428 17:05:04.389134 8468 net.cpp:367] drop7 -> fc7 (in-place)
I0428 17:05:04.389160 8468 net.cpp:122] Setting up drop7
I0428 17:05:04.389168 8468 net.cpp:129] Top shape: 32 1024 (32768)
I0428 17:05:04.389173 8468 net.cpp:137] Memory required for data: 235138816
I0428 17:05:04.389178 8468 layer_factory.hpp:77] Creating layer fc8
I0428 17:05:04.389184 8468 net.cpp:84] Creating Layer fc8
I0428 17:05:04.389189 8468 net.cpp:406] fc8 <- fc7
I0428 17:05:04.389195 8468 net.cpp:380] fc8 -> fc8
I0428 17:05:04.391175 8468 net.cpp:122] Setting up fc8
I0428 17:05:04.391182 8468 net.cpp:129] Top shape: 32 196 (6272)
I0428 17:05:04.391186 8468 net.cpp:137] Memory required for data: 235163904
I0428 17:05:04.391193 8468 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
I0428 17:05:04.391201 8468 net.cpp:84] Creating Layer fc8_fc8_0_split
I0428 17:05:04.391206 8468 net.cpp:406] fc8_fc8_0_split <- fc8
I0428 17:05:04.391211 8468 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0
I0428 17:05:04.391243 8468 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1
I0428 17:05:04.391281 8468 net.cpp:122] Setting up fc8_fc8_0_split
I0428 17:05:04.391288 8468 net.cpp:129] Top shape: 32 196 (6272)
I0428 17:05:04.391291 8468 net.cpp:129] Top shape: 32 196 (6272)
I0428 17:05:04.391295 8468 net.cpp:137] Memory required for data: 235214080
I0428 17:05:04.391299 8468 layer_factory.hpp:77] Creating layer accuracy
I0428 17:05:04.391309 8468 net.cpp:84] Creating Layer accuracy
I0428 17:05:04.391312 8468 net.cpp:406] accuracy <- fc8_fc8_0_split_0
I0428 17:05:04.391319 8468 net.cpp:406] accuracy <- label_val-data_1_split_0
I0428 17:05:04.391324 8468 net.cpp:380] accuracy -> accuracy
I0428 17:05:04.391332 8468 net.cpp:122] Setting up accuracy
I0428 17:05:04.391336 8468 net.cpp:129] Top shape: (1)
I0428 17:05:04.391340 8468 net.cpp:137] Memory required for data: 235214084
I0428 17:05:04.391345 8468 layer_factory.hpp:77] Creating layer loss
I0428 17:05:04.391352 8468 net.cpp:84] Creating Layer loss
I0428 17:05:04.391356 8468 net.cpp:406] loss <- fc8_fc8_0_split_1
I0428 17:05:04.391361 8468 net.cpp:406] loss <- label_val-data_1_split_1
I0428 17:05:04.391367 8468 net.cpp:380] loss -> loss
I0428 17:05:04.391374 8468 layer_factory.hpp:77] Creating layer loss
I0428 17:05:04.411280 8468 net.cpp:122] Setting up loss
I0428 17:05:04.411294 8468 net.cpp:129] Top shape: (1)
I0428 17:05:04.411300 8468 net.cpp:132] with loss weight 1
I0428 17:05:04.411311 8468 net.cpp:137] Memory required for data: 235214088
I0428 17:05:04.411316 8468 net.cpp:198] loss needs backward computation.
I0428 17:05:04.411322 8468 net.cpp:200] accuracy does not need backward computation.
I0428 17:05:04.411327 8468 net.cpp:198] fc8_fc8_0_split needs backward computation.
I0428 17:05:04.411332 8468 net.cpp:198] fc8 needs backward computation.
I0428 17:05:04.411337 8468 net.cpp:198] drop7 needs backward computation.
I0428 17:05:04.411342 8468 net.cpp:198] relu7 needs backward computation.
I0428 17:05:04.411347 8468 net.cpp:198] fc7 needs backward computation.
I0428 17:05:04.411351 8468 net.cpp:198] drop6 needs backward computation.
I0428 17:05:04.411355 8468 net.cpp:198] relu6 needs backward computation.
I0428 17:05:04.411360 8468 net.cpp:198] fc6 needs backward computation.
I0428 17:05:04.411365 8468 net.cpp:198] pool5 needs backward computation.
I0428 17:05:04.411368 8468 net.cpp:198] relu5 needs backward computation.
I0428 17:05:04.411373 8468 net.cpp:198] conv5 needs backward computation.
I0428 17:05:04.411377 8468 net.cpp:198] relu4 needs backward computation.
I0428 17:05:04.411381 8468 net.cpp:198] conv4 needs backward computation.
I0428 17:05:04.411387 8468 net.cpp:198] relu3 needs backward computation.
I0428 17:05:04.411392 8468 net.cpp:198] conv3 needs backward computation.
I0428 17:05:04.411396 8468 net.cpp:198] pool2 needs backward computation.
I0428 17:05:04.411401 8468 net.cpp:198] norm2 needs backward computation.
I0428 17:05:04.411406 8468 net.cpp:198] relu2 needs backward computation.
I0428 17:05:04.411409 8468 net.cpp:198] conv2 needs backward computation.
I0428 17:05:04.411414 8468 net.cpp:198] pool1 needs backward computation.
I0428 17:05:04.411418 8468 net.cpp:198] norm1 needs backward computation.
I0428 17:05:04.411422 8468 net.cpp:198] relu1 needs backward computation.
I0428 17:05:04.411427 8468 net.cpp:198] conv1 needs backward computation.
I0428 17:05:04.411433 8468 net.cpp:200] label_val-data_1_split does not need backward computation.
I0428 17:05:04.411438 8468 net.cpp:200] val-data does not need backward computation.
I0428 17:05:04.411443 8468 net.cpp:242] This network produces output accuracy
I0428 17:05:04.411449 8468 net.cpp:242] This network produces output loss
I0428 17:05:04.411469 8468 net.cpp:255] Network initialization done.
I0428 17:05:04.411542 8468 solver.cpp:56] Solver scaffolding done.
I0428 17:05:04.412016 8468 caffe.cpp:248] Starting Optimization
I0428 17:05:04.412025 8468 solver.cpp:272] Solving
I0428 17:05:04.412029 8468 solver.cpp:273] Learning Rate Policy: exp
I0428 17:05:04.416846 8468 solver.cpp:330] Iteration 0, Testing net (#0)
I0428 17:05:04.416857 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:05:04.457778 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:05:09.118793 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:05:09.166906 8468 solver.cpp:397] Test net output #0: accuracy = 0.00245098
I0428 17:05:09.166949 8468 solver.cpp:397] Test net output #1: loss = 5.28004 (* 1 = 5.28004 loss)
I0428 17:05:09.319537 8468 solver.cpp:218] Iteration 0 (-3.72531e-39 iter/s, 4.90724s/12 iters), loss = 5.27436
I0428 17:05:09.321087 8468 solver.cpp:237] Train net output #0: loss = 5.27436 (* 1 = 5.27436 loss)
I0428 17:05:09.321106 8468 sgd_solver.cpp:105] Iteration 0, lr = 0.01
I0428 17:05:13.500245 8468 solver.cpp:218] Iteration 12 (2.87152 iter/s, 4.17897s/12 iters), loss = 5.27126
I0428 17:05:13.500294 8468 solver.cpp:237] Train net output #0: loss = 5.27126 (* 1 = 5.27126 loss)
I0428 17:05:13.500304 8468 sgd_solver.cpp:105] Iteration 12, lr = 0.00997626
I0428 17:05:18.910413 8468 solver.cpp:218] Iteration 24 (2.21817 iter/s, 5.40987s/12 iters), loss = 5.27332
I0428 17:05:18.910459 8468 solver.cpp:237] Train net output #0: loss = 5.27332 (* 1 = 5.27332 loss)
I0428 17:05:18.910468 8468 sgd_solver.cpp:105] Iteration 24, lr = 0.00995257
I0428 17:05:24.436957 8468 solver.cpp:218] Iteration 36 (2.17145 iter/s, 5.52626s/12 iters), loss = 5.29045
I0428 17:05:24.436990 8468 solver.cpp:237] Train net output #0: loss = 5.29045 (* 1 = 5.29045 loss)
I0428 17:05:24.437000 8468 sgd_solver.cpp:105] Iteration 36, lr = 0.00992894
I0428 17:05:29.841836 8468 solver.cpp:218] Iteration 48 (2.22033 iter/s, 5.4046s/12 iters), loss = 5.2729
I0428 17:05:29.841881 8468 solver.cpp:237] Train net output #0: loss = 5.2729 (* 1 = 5.2729 loss)
I0428 17:05:29.841892 8468 sgd_solver.cpp:105] Iteration 48, lr = 0.00990537
I0428 17:05:35.193605 8468 solver.cpp:218] Iteration 60 (2.24237 iter/s, 5.35149s/12 iters), loss = 5.28498
I0428 17:05:35.196002 8468 solver.cpp:237] Train net output #0: loss = 5.28498 (* 1 = 5.28498 loss)
I0428 17:05:35.196014 8468 sgd_solver.cpp:105] Iteration 60, lr = 0.00988185
I0428 17:05:40.541934 8468 solver.cpp:218] Iteration 72 (2.2448 iter/s, 5.3457s/12 iters), loss = 5.27915
I0428 17:05:40.541977 8468 solver.cpp:237] Train net output #0: loss = 5.27915 (* 1 = 5.27915 loss)
I0428 17:05:40.541986 8468 sgd_solver.cpp:105] Iteration 72, lr = 0.00985839
I0428 17:05:45.918064 8468 solver.cpp:218] Iteration 84 (2.23221 iter/s, 5.37585s/12 iters), loss = 5.2813
I0428 17:05:45.918104 8468 solver.cpp:237] Train net output #0: loss = 5.2813 (* 1 = 5.2813 loss)
I0428 17:05:45.918114 8468 sgd_solver.cpp:105] Iteration 84, lr = 0.00983498
I0428 17:05:51.374163 8468 solver.cpp:218] Iteration 96 (2.19949 iter/s, 5.45581s/12 iters), loss = 5.28716
I0428 17:05:51.374209 8468 solver.cpp:237] Train net output #0: loss = 5.28716 (* 1 = 5.28716 loss)
I0428 17:05:51.374219 8468 sgd_solver.cpp:105] Iteration 96, lr = 0.00981163
I0428 17:05:53.268280 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:05:53.583232 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel
I0428 17:05:54.193843 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate
I0428 17:05:54.626422 8468 solver.cpp:330] Iteration 102, Testing net (#0)
I0428 17:05:54.626447 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:05:59.079623 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:05:59.163388 8468 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0428 17:05:59.163426 8468 solver.cpp:397] Test net output #1: loss = 5.28244 (* 1 = 5.28244 loss)
I0428 17:06:01.046315 8468 solver.cpp:218] Iteration 108 (1.24073 iter/s, 9.6717s/12 iters), loss = 5.27672
I0428 17:06:01.046361 8468 solver.cpp:237] Train net output #0: loss = 5.27672 (* 1 = 5.27672 loss)
I0428 17:06:01.046371 8468 sgd_solver.cpp:105] Iteration 108, lr = 0.00978834
I0428 17:06:06.434146 8468 solver.cpp:218] Iteration 120 (2.22736 iter/s, 5.38755s/12 iters), loss = 5.26979
I0428 17:06:06.434286 8468 solver.cpp:237] Train net output #0: loss = 5.26979 (* 1 = 5.26979 loss)
I0428 17:06:06.434296 8468 sgd_solver.cpp:105] Iteration 120, lr = 0.0097651
I0428 17:06:11.829610 8468 solver.cpp:218] Iteration 132 (2.22424 iter/s, 5.39509s/12 iters), loss = 5.26569
I0428 17:06:11.829656 8468 solver.cpp:237] Train net output #0: loss = 5.26569 (* 1 = 5.26569 loss)
I0428 17:06:11.829668 8468 sgd_solver.cpp:105] Iteration 132, lr = 0.00974192
I0428 17:06:17.292146 8468 solver.cpp:218] Iteration 144 (2.1969 iter/s, 5.46225s/12 iters), loss = 5.27889
I0428 17:06:17.292189 8468 solver.cpp:237] Train net output #0: loss = 5.27889 (* 1 = 5.27889 loss)
I0428 17:06:17.292199 8468 sgd_solver.cpp:105] Iteration 144, lr = 0.00971879
I0428 17:06:22.701609 8468 solver.cpp:218] Iteration 156 (2.21845 iter/s, 5.40919s/12 iters), loss = 5.28487
I0428 17:06:22.701644 8468 solver.cpp:237] Train net output #0: loss = 5.28487 (* 1 = 5.28487 loss)
I0428 17:06:22.701655 8468 sgd_solver.cpp:105] Iteration 156, lr = 0.00969571
I0428 17:06:28.330230 8468 solver.cpp:218] Iteration 168 (2.13207 iter/s, 5.62834s/12 iters), loss = 5.27293
I0428 17:06:28.330271 8468 solver.cpp:237] Train net output #0: loss = 5.27293 (* 1 = 5.27293 loss)
I0428 17:06:28.330281 8468 sgd_solver.cpp:105] Iteration 168, lr = 0.00967269
I0428 17:06:33.862092 8468 solver.cpp:218] Iteration 180 (2.16936 iter/s, 5.53158s/12 iters), loss = 5.28362
I0428 17:06:33.862140 8468 solver.cpp:237] Train net output #0: loss = 5.28362 (* 1 = 5.28362 loss)
I0428 17:06:33.862151 8468 sgd_solver.cpp:105] Iteration 180, lr = 0.00964973
I0428 17:06:39.582921 8468 solver.cpp:218] Iteration 192 (2.09771 iter/s, 5.72054s/12 iters), loss = 5.26917
I0428 17:06:39.583106 8468 solver.cpp:237] Train net output #0: loss = 5.26917 (* 1 = 5.26917 loss)
I0428 17:06:39.583117 8468 sgd_solver.cpp:105] Iteration 192, lr = 0.00962682
I0428 17:06:43.732290 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:06:44.446611 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel
I0428 17:06:45.670266 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate
I0428 17:06:46.734509 8468 solver.cpp:330] Iteration 204, Testing net (#0)
I0428 17:06:46.734534 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:06:51.315469 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:06:51.447312 8468 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0428 17:06:51.447345 8468 solver.cpp:397] Test net output #1: loss = 5.28285 (* 1 = 5.28285 loss)
I0428 17:06:51.573474 8468 solver.cpp:218] Iteration 204 (1.00084 iter/s, 11.9899s/12 iters), loss = 5.26147
I0428 17:06:51.573514 8468 solver.cpp:237] Train net output #0: loss = 5.26147 (* 1 = 5.26147 loss)
I0428 17:06:51.573523 8468 sgd_solver.cpp:105] Iteration 204, lr = 0.00960396
I0428 17:06:56.282714 8468 solver.cpp:218] Iteration 216 (2.54832 iter/s, 4.70899s/12 iters), loss = 5.27448
I0428 17:06:56.282763 8468 solver.cpp:237] Train net output #0: loss = 5.27448 (* 1 = 5.27448 loss)
I0428 17:06:56.282775 8468 sgd_solver.cpp:105] Iteration 216, lr = 0.00958116
I0428 17:07:01.728842 8468 solver.cpp:218] Iteration 228 (2.20351 iter/s, 5.44585s/12 iters), loss = 5.27
I0428 17:07:01.728879 8468 solver.cpp:237] Train net output #0: loss = 5.27 (* 1 = 5.27 loss)
I0428 17:07:01.728888 8468 sgd_solver.cpp:105] Iteration 228, lr = 0.00955841
I0428 17:07:07.093895 8468 solver.cpp:218] Iteration 240 (2.23681 iter/s, 5.36479s/12 iters), loss = 5.25976
I0428 17:07:07.093935 8468 solver.cpp:237] Train net output #0: loss = 5.25976 (* 1 = 5.25976 loss)
I0428 17:07:07.093943 8468 sgd_solver.cpp:105] Iteration 240, lr = 0.00953572
I0428 17:07:12.481320 8468 solver.cpp:218] Iteration 252 (2.22752 iter/s, 5.38715s/12 iters), loss = 5.28528
I0428 17:07:12.481456 8468 solver.cpp:237] Train net output #0: loss = 5.28528 (* 1 = 5.28528 loss)
I0428 17:07:12.481467 8468 sgd_solver.cpp:105] Iteration 252, lr = 0.00951308
I0428 17:07:17.881352 8468 solver.cpp:218] Iteration 264 (2.22236 iter/s, 5.39967s/12 iters), loss = 5.25807
I0428 17:07:17.881392 8468 solver.cpp:237] Train net output #0: loss = 5.25807 (* 1 = 5.25807 loss)
I0428 17:07:17.881402 8468 sgd_solver.cpp:105] Iteration 264, lr = 0.00949049
I0428 17:07:23.266052 8468 solver.cpp:218] Iteration 276 (2.22865 iter/s, 5.38443s/12 iters), loss = 5.26004
I0428 17:07:23.266091 8468 solver.cpp:237] Train net output #0: loss = 5.26004 (* 1 = 5.26004 loss)
I0428 17:07:23.266101 8468 sgd_solver.cpp:105] Iteration 276, lr = 0.00946796
I0428 17:07:28.636466 8468 solver.cpp:218] Iteration 288 (2.23458 iter/s, 5.37014s/12 iters), loss = 5.28638
I0428 17:07:28.636528 8468 solver.cpp:237] Train net output #0: loss = 5.28638 (* 1 = 5.28638 loss)
I0428 17:07:28.636538 8468 sgd_solver.cpp:105] Iteration 288, lr = 0.00944548
I0428 17:07:34.153259 8468 solver.cpp:218] Iteration 300 (2.17529 iter/s, 5.51649s/12 iters), loss = 5.27914
I0428 17:07:34.153299 8468 solver.cpp:237] Train net output #0: loss = 5.27914 (* 1 = 5.27914 loss)
I0428 17:07:34.153311 8468 sgd_solver.cpp:105] Iteration 300, lr = 0.00942305
I0428 17:07:35.274613 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:07:36.382230 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel
I0428 17:07:37.823722 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate
I0428 17:07:38.437075 8468 solver.cpp:330] Iteration 306, Testing net (#0)
I0428 17:07:38.437095 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:07:42.760650 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:07:42.925802 8468 solver.cpp:397] Test net output #0: accuracy = 0.0128676
I0428 17:07:42.925832 8468 solver.cpp:397] Test net output #1: loss = 5.20103 (* 1 = 5.20103 loss)
I0428 17:07:44.952443 8468 solver.cpp:218] Iteration 312 (1.11125 iter/s, 10.7987s/12 iters), loss = 5.2372
I0428 17:07:44.952510 8468 solver.cpp:237] Train net output #0: loss = 5.2372 (* 1 = 5.2372 loss)
I0428 17:07:44.952520 8468 sgd_solver.cpp:105] Iteration 312, lr = 0.00940068
I0428 17:07:50.319155 8468 solver.cpp:218] Iteration 324 (2.23612 iter/s, 5.36644s/12 iters), loss = 5.19498
I0428 17:07:50.319197 8468 solver.cpp:237] Train net output #0: loss = 5.19498 (* 1 = 5.19498 loss)
I0428 17:07:50.319207 8468 sgd_solver.cpp:105] Iteration 324, lr = 0.00937836
I0428 17:07:55.732169 8468 solver.cpp:218] Iteration 336 (2.21699 iter/s, 5.41274s/12 iters), loss = 5.22829
I0428 17:07:55.732213 8468 solver.cpp:237] Train net output #0: loss = 5.22829 (* 1 = 5.22829 loss)
I0428 17:07:55.732223 8468 sgd_solver.cpp:105] Iteration 336, lr = 0.0093561
I0428 17:08:01.331585 8468 solver.cpp:218] Iteration 348 (2.14319 iter/s, 5.59914s/12 iters), loss = 5.16491
I0428 17:08:01.331622 8468 solver.cpp:237] Train net output #0: loss = 5.16491 (* 1 = 5.16491 loss)
I0428 17:08:01.331632 8468 sgd_solver.cpp:105] Iteration 348, lr = 0.00933388
I0428 17:08:06.846345 8468 solver.cpp:218] Iteration 360 (2.17609 iter/s, 5.51449s/12 iters), loss = 5.18139
I0428 17:08:06.846385 8468 solver.cpp:237] Train net output #0: loss = 5.18139 (* 1 = 5.18139 loss)
I0428 17:08:06.846393 8468 sgd_solver.cpp:105] Iteration 360, lr = 0.00931172
I0428 17:08:12.304538 8468 solver.cpp:218] Iteration 372 (2.19865 iter/s, 5.45789s/12 iters), loss = 5.22535
I0428 17:08:12.304581 8468 solver.cpp:237] Train net output #0: loss = 5.22535 (* 1 = 5.22535 loss)
I0428 17:08:12.304590 8468 sgd_solver.cpp:105] Iteration 372, lr = 0.00928961
I0428 17:08:17.573839 8468 solver.cpp:218] Iteration 384 (2.27746 iter/s, 5.26904s/12 iters), loss = 5.13936
I0428 17:08:17.573968 8468 solver.cpp:237] Train net output #0: loss = 5.13936 (* 1 = 5.13936 loss)
I0428 17:08:17.573980 8468 sgd_solver.cpp:105] Iteration 384, lr = 0.00926756
I0428 17:08:22.996433 8468 solver.cpp:218] Iteration 396 (2.21311 iter/s, 5.42224s/12 iters), loss = 5.12522
I0428 17:08:22.996477 8468 solver.cpp:237] Train net output #0: loss = 5.12522 (* 1 = 5.12522 loss)
I0428 17:08:22.996505 8468 sgd_solver.cpp:105] Iteration 396, lr = 0.00924556
I0428 17:08:26.359738 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:08:27.869374 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel
I0428 17:08:28.816205 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate
I0428 17:08:30.810431 8468 solver.cpp:330] Iteration 408, Testing net (#0)
I0428 17:08:30.810453 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:08:35.135363 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:08:35.351131 8468 solver.cpp:397] Test net output #0: accuracy = 0.00857843
I0428 17:08:35.351163 8468 solver.cpp:397] Test net output #1: loss = 5.13222 (* 1 = 5.13222 loss)
I0428 17:08:35.482503 8468 solver.cpp:218] Iteration 408 (0.961114 iter/s, 12.4855s/12 iters), loss = 5.18013
I0428 17:08:35.482547 8468 solver.cpp:237] Train net output #0: loss = 5.18013 (* 1 = 5.18013 loss)
I0428 17:08:35.482554 8468 sgd_solver.cpp:105] Iteration 408, lr = 0.00922361
I0428 17:08:40.044705 8468 solver.cpp:218] Iteration 420 (2.63045 iter/s, 4.56196s/12 iters), loss = 5.01401
I0428 17:08:40.044751 8468 solver.cpp:237] Train net output #0: loss = 5.01401 (* 1 = 5.01401 loss)
I0428 17:08:40.044762 8468 sgd_solver.cpp:105] Iteration 420, lr = 0.00920171
I0428 17:08:45.779515 8468 solver.cpp:218] Iteration 432 (2.09259 iter/s, 5.73453s/12 iters), loss = 5.01146
I0428 17:08:45.779551 8468 solver.cpp:237] Train net output #0: loss = 5.01146 (* 1 = 5.01146 loss)
I0428 17:08:45.779561 8468 sgd_solver.cpp:105] Iteration 432, lr = 0.00917986
I0428 17:08:51.364676 8468 solver.cpp:218] Iteration 444 (2.14866 iter/s, 5.58489s/12 iters), loss = 5.14291
I0428 17:08:51.364894 8468 solver.cpp:237] Train net output #0: loss = 5.14291 (* 1 = 5.14291 loss)
I0428 17:08:51.364905 8468 sgd_solver.cpp:105] Iteration 444, lr = 0.00915807
I0428 17:08:56.837961 8468 solver.cpp:218] Iteration 456 (2.19265 iter/s, 5.47284s/12 iters), loss = 5.10121
I0428 17:08:56.838003 8468 solver.cpp:237] Train net output #0: loss = 5.10121 (* 1 = 5.10121 loss)
I0428 17:08:56.838013 8468 sgd_solver.cpp:105] Iteration 456, lr = 0.00913632
I0428 17:09:02.239782 8468 solver.cpp:218] Iteration 468 (2.22158 iter/s, 5.40155s/12 iters), loss = 5.11242
I0428 17:09:02.239822 8468 solver.cpp:237] Train net output #0: loss = 5.11242 (* 1 = 5.11242 loss)
I0428 17:09:02.239832 8468 sgd_solver.cpp:105] Iteration 468, lr = 0.00911463
I0428 17:09:07.711228 8468 solver.cpp:218] Iteration 480 (2.19331 iter/s, 5.47118s/12 iters), loss = 5.05996
I0428 17:09:07.711274 8468 solver.cpp:237] Train net output #0: loss = 5.05996 (* 1 = 5.05996 loss)
I0428 17:09:07.711284 8468 sgd_solver.cpp:105] Iteration 480, lr = 0.00909299
I0428 17:09:13.192277 8468 solver.cpp:218] Iteration 492 (2.18947 iter/s, 5.48077s/12 iters), loss = 5.15082
I0428 17:09:13.192310 8468 solver.cpp:237] Train net output #0: loss = 5.15082 (* 1 = 5.15082 loss)
I0428 17:09:13.192318 8468 sgd_solver.cpp:105] Iteration 492, lr = 0.0090714
I0428 17:09:18.609208 8468 solver.cpp:218] Iteration 504 (2.21538 iter/s, 5.41667s/12 iters), loss = 5.09469
I0428 17:09:18.609244 8468 solver.cpp:237] Train net output #0: loss = 5.09469 (* 1 = 5.09469 loss)
I0428 17:09:18.609254 8468 sgd_solver.cpp:105] Iteration 504, lr = 0.00904986
I0428 17:09:18.866868 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:09:20.803237 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel
I0428 17:09:21.426465 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate
I0428 17:09:21.873039 8468 solver.cpp:330] Iteration 510, Testing net (#0)
I0428 17:09:21.873057 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:09:26.106806 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:09:26.358701 8468 solver.cpp:397] Test net output #0: accuracy = 0.0104167
I0428 17:09:26.358748 8468 solver.cpp:397] Test net output #1: loss = 5.08826 (* 1 = 5.08826 loss)
I0428 17:09:28.432018 8468 solver.cpp:218] Iteration 516 (1.2217 iter/s, 9.82236s/12 iters), loss = 4.99447
I0428 17:09:28.432070 8468 solver.cpp:237] Train net output #0: loss = 4.99447 (* 1 = 4.99447 loss)
I0428 17:09:28.432080 8468 sgd_solver.cpp:105] Iteration 516, lr = 0.00902838
I0428 17:09:33.910023 8468 solver.cpp:218] Iteration 528 (2.19069 iter/s, 5.47773s/12 iters), loss = 5.0436
I0428 17:09:33.910064 8468 solver.cpp:237] Train net output #0: loss = 5.0436 (* 1 = 5.0436 loss)
I0428 17:09:33.910074 8468 sgd_solver.cpp:105] Iteration 528, lr = 0.00900694
I0428 17:09:39.313974 8468 solver.cpp:218] Iteration 540 (2.22071 iter/s, 5.40368s/12 iters), loss = 5.06489
I0428 17:09:39.314015 8468 solver.cpp:237] Train net output #0: loss = 5.06489 (* 1 = 5.06489 loss)
I0428 17:09:39.314025 8468 sgd_solver.cpp:105] Iteration 540, lr = 0.00898556
I0428 17:09:44.685997 8468 solver.cpp:218] Iteration 552 (2.23391 iter/s, 5.37176s/12 iters), loss = 5.17721
I0428 17:09:44.686038 8468 solver.cpp:237] Train net output #0: loss = 5.17721 (* 1 = 5.17721 loss)
I0428 17:09:44.686048 8468 sgd_solver.cpp:105] Iteration 552, lr = 0.00896423
I0428 17:09:50.097889 8468 solver.cpp:218] Iteration 564 (2.21745 iter/s, 5.41162s/12 iters), loss = 5.15701
I0428 17:09:50.097937 8468 solver.cpp:237] Train net output #0: loss = 5.15701 (* 1 = 5.15701 loss)
I0428 17:09:50.097946 8468 sgd_solver.cpp:105] Iteration 564, lr = 0.00894294
I0428 17:09:55.500936 8468 solver.cpp:218] Iteration 576 (2.22108 iter/s, 5.40277s/12 iters), loss = 5.02861
I0428 17:09:55.501036 8468 solver.cpp:237] Train net output #0: loss = 5.02861 (* 1 = 5.02861 loss)
I0428 17:09:55.501047 8468 sgd_solver.cpp:105] Iteration 576, lr = 0.00892171
I0428 17:10:00.871152 8468 solver.cpp:218] Iteration 588 (2.23468 iter/s, 5.36989s/12 iters), loss = 5.04939
I0428 17:10:00.871198 8468 solver.cpp:237] Train net output #0: loss = 5.04939 (* 1 = 5.04939 loss)
I0428 17:10:00.871210 8468 sgd_solver.cpp:105] Iteration 588, lr = 0.00890053
I0428 17:10:06.439690 8468 solver.cpp:218] Iteration 600 (2.15507 iter/s, 5.56826s/12 iters), loss = 5.10244
I0428 17:10:06.439733 8468 solver.cpp:237] Train net output #0: loss = 5.10244 (* 1 = 5.10244 loss)
I0428 17:10:06.439743 8468 sgd_solver.cpp:105] Iteration 600, lr = 0.0088794
I0428 17:10:09.000190 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:10:11.305197 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel
I0428 17:10:12.978655 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate
I0428 17:10:13.447384 8468 solver.cpp:330] Iteration 612, Testing net (#0)
I0428 17:10:13.447404 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:10:17.637253 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:10:17.936543 8468 solver.cpp:397] Test net output #0: accuracy = 0.0110294
I0428 17:10:17.936589 8468 solver.cpp:397] Test net output #1: loss = 5.06223 (* 1 = 5.06223 loss)
I0428 17:10:18.065049 8468 solver.cpp:218] Iteration 612 (1.03227 iter/s, 11.6248s/12 iters), loss = 5.0226
I0428 17:10:18.065091 8468 solver.cpp:237] Train net output #0: loss = 5.0226 (* 1 = 5.0226 loss)
I0428 17:10:18.065102 8468 sgd_solver.cpp:105] Iteration 612, lr = 0.00885831
I0428 17:10:22.566565 8468 solver.cpp:218] Iteration 624 (2.66591 iter/s, 4.50129s/12 iters), loss = 5.14907
I0428 17:10:22.566612 8468 solver.cpp:237] Train net output #0: loss = 5.14907 (* 1 = 5.14907 loss)
I0428 17:10:22.566623 8468 sgd_solver.cpp:105] Iteration 624, lr = 0.00883728
I0428 17:10:27.904968 8468 solver.cpp:218] Iteration 636 (2.24798 iter/s, 5.33814s/12 iters), loss = 5.154
I0428 17:10:27.905200 8468 solver.cpp:237] Train net output #0: loss = 5.154 (* 1 = 5.154 loss)
I0428 17:10:27.905211 8468 sgd_solver.cpp:105] Iteration 636, lr = 0.0088163
I0428 17:10:33.327661 8468 solver.cpp:218] Iteration 648 (2.21311 iter/s, 5.42223s/12 iters), loss = 5.11436
I0428 17:10:33.327708 8468 solver.cpp:237] Train net output #0: loss = 5.11436 (* 1 = 5.11436 loss)
I0428 17:10:33.327719 8468 sgd_solver.cpp:105] Iteration 648, lr = 0.00879537
I0428 17:10:38.712905 8468 solver.cpp:218] Iteration 660 (2.22842 iter/s, 5.38498s/12 iters), loss = 5.05737
I0428 17:10:38.712940 8468 solver.cpp:237] Train net output #0: loss = 5.05737 (* 1 = 5.05737 loss)
I0428 17:10:38.712949 8468 sgd_solver.cpp:105] Iteration 660, lr = 0.00877449
I0428 17:10:44.187678 8468 solver.cpp:218] Iteration 672 (2.19198 iter/s, 5.47451s/12 iters), loss = 5.0456
I0428 17:10:44.187717 8468 solver.cpp:237] Train net output #0: loss = 5.0456 (* 1 = 5.0456 loss)
I0428 17:10:44.187728 8468 sgd_solver.cpp:105] Iteration 672, lr = 0.00875366
I0428 17:10:49.064927 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:10:49.588500 8468 solver.cpp:218] Iteration 684 (2.222 iter/s, 5.40054s/12 iters), loss = 4.97355
I0428 17:10:49.588542 8468 solver.cpp:237] Train net output #0: loss = 4.97355 (* 1 = 4.97355 loss)
I0428 17:10:49.588552 8468 sgd_solver.cpp:105] Iteration 684, lr = 0.00873287
I0428 17:10:55.155923 8468 solver.cpp:218] Iteration 696 (2.1555 iter/s, 5.56715s/12 iters), loss = 5.05126
I0428 17:10:55.155972 8468 solver.cpp:237] Train net output #0: loss = 5.05126 (* 1 = 5.05126 loss)
I0428 17:10:55.155982 8468 sgd_solver.cpp:105] Iteration 696, lr = 0.00871214
I0428 17:11:00.507278 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:11:00.950453 8468 solver.cpp:218] Iteration 708 (2.07102 iter/s, 5.79424s/12 iters), loss = 4.98734
I0428 17:11:00.950498 8468 solver.cpp:237] Train net output #0: loss = 4.98734 (* 1 = 4.98734 loss)
I0428 17:11:00.950507 8468 sgd_solver.cpp:105] Iteration 708, lr = 0.00869145
I0428 17:11:03.224025 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel
I0428 17:11:04.352757 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate
I0428 17:11:06.713780 8468 solver.cpp:330] Iteration 714, Testing net (#0)
I0428 17:11:06.713809 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:11:11.015446 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:11:11.348263 8468 solver.cpp:397] Test net output #0: accuracy = 0.0196078
I0428 17:11:11.348300 8468 solver.cpp:397] Test net output #1: loss = 5.01757 (* 1 = 5.01757 loss)
I0428 17:11:13.500391 8468 solver.cpp:218] Iteration 720 (0.956222 iter/s, 12.5494s/12 iters), loss = 5.09171
I0428 17:11:13.500427 8468 solver.cpp:237] Train net output #0: loss = 5.09171 (* 1 = 5.09171 loss)
I0428 17:11:13.500437 8468 sgd_solver.cpp:105] Iteration 720, lr = 0.00867082
I0428 17:11:18.950918 8468 solver.cpp:218] Iteration 732 (2.20173 iter/s, 5.45026s/12 iters), loss = 5.07471
I0428 17:11:18.950956 8468 solver.cpp:237] Train net output #0: loss = 5.07471 (* 1 = 5.07471 loss)
I0428 17:11:18.950965 8468 sgd_solver.cpp:105] Iteration 732, lr = 0.00865023
I0428 17:11:24.374450 8468 solver.cpp:218] Iteration 744 (2.21269 iter/s, 5.42327s/12 iters), loss = 4.91155
I0428 17:11:24.374490 8468 solver.cpp:237] Train net output #0: loss = 4.91155 (* 1 = 4.91155 loss)
I0428 17:11:24.374500 8468 sgd_solver.cpp:105] Iteration 744, lr = 0.0086297
I0428 17:11:29.899490 8468 solver.cpp:218] Iteration 756 (2.17204 iter/s, 5.52477s/12 iters), loss = 4.98481
I0428 17:11:29.899530 8468 solver.cpp:237] Train net output #0: loss = 4.98481 (* 1 = 4.98481 loss)
I0428 17:11:29.899539 8468 sgd_solver.cpp:105] Iteration 756, lr = 0.00860921
I0428 17:11:35.290779 8468 solver.cpp:218] Iteration 768 (2.22592 iter/s, 5.39102s/12 iters), loss = 5.00341
I0428 17:11:35.290915 8468 solver.cpp:237] Train net output #0: loss = 5.00341 (* 1 = 5.00341 loss)
I0428 17:11:35.290925 8468 sgd_solver.cpp:105] Iteration 768, lr = 0.00858877
I0428 17:11:40.669930 8468 solver.cpp:218] Iteration 780 (2.23099 iter/s, 5.37879s/12 iters), loss = 4.8663
I0428 17:11:40.669988 8468 solver.cpp:237] Train net output #0: loss = 4.8663 (* 1 = 4.8663 loss)
I0428 17:11:40.670004 8468 sgd_solver.cpp:105] Iteration 780, lr = 0.00856838
I0428 17:11:46.276527 8468 solver.cpp:218] Iteration 792 (2.14045 iter/s, 5.60631s/12 iters), loss = 4.86655
I0428 17:11:46.276567 8468 solver.cpp:237] Train net output #0: loss = 4.86655 (* 1 = 4.86655 loss)
I0428 17:11:46.276577 8468 sgd_solver.cpp:105] Iteration 792, lr = 0.00854803
I0428 17:11:51.827461 8468 solver.cpp:218] Iteration 804 (2.16191 iter/s, 5.55066s/12 iters), loss = 5.03654
I0428 17:11:51.827505 8468 solver.cpp:237] Train net output #0: loss = 5.03654 (* 1 = 5.03654 loss)
I0428 17:11:51.827513 8468 sgd_solver.cpp:105] Iteration 804, lr = 0.00852774
I0428 17:11:53.704169 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:11:56.838284 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel
I0428 17:11:57.445858 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate
I0428 17:11:57.888985 8468 solver.cpp:330] Iteration 816, Testing net (#0)
I0428 17:11:57.889003 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:12:02.010901 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:12:02.378180 8468 solver.cpp:397] Test net output #0: accuracy = 0.0251225
I0428 17:12:02.378226 8468 solver.cpp:397] Test net output #1: loss = 4.95976 (* 1 = 4.95976 loss)
I0428 17:12:02.509510 8468 solver.cpp:218] Iteration 816 (1.12343 iter/s, 10.6816s/12 iters), loss = 4.90248
I0428 17:12:02.509557 8468 solver.cpp:237] Train net output #0: loss = 4.90248 (* 1 = 4.90248 loss)
I0428 17:12:02.509569 8468 sgd_solver.cpp:105] Iteration 816, lr = 0.00850749
I0428 17:12:06.997107 8468 solver.cpp:218] Iteration 828 (2.67418 iter/s, 4.48736s/12 iters), loss = 4.894
I0428 17:12:06.997195 8468 solver.cpp:237] Train net output #0: loss = 4.894 (* 1 = 4.894 loss)
I0428 17:12:06.997208 8468 sgd_solver.cpp:105] Iteration 828, lr = 0.00848729
I0428 17:12:12.601701 8468 solver.cpp:218] Iteration 840 (2.14122 iter/s, 5.60427s/12 iters), loss = 4.8474
I0428 17:12:12.601740 8468 solver.cpp:237] Train net output #0: loss = 4.8474 (* 1 = 4.8474 loss)
I0428 17:12:12.601752 8468 sgd_solver.cpp:105] Iteration 840, lr = 0.00846714
I0428 17:12:18.119065 8468 solver.cpp:218] Iteration 852 (2.17506 iter/s, 5.5171s/12 iters), loss = 4.83236
I0428 17:12:18.119097 8468 solver.cpp:237] Train net output #0: loss = 4.83236 (* 1 = 4.83236 loss)
I0428 17:12:18.119107 8468 sgd_solver.cpp:105] Iteration 852, lr = 0.00844704
I0428 17:12:23.535920 8468 solver.cpp:218] Iteration 864 (2.21542 iter/s, 5.41659s/12 iters), loss = 4.95609
I0428 17:12:23.535967 8468 solver.cpp:237] Train net output #0: loss = 4.95609 (* 1 = 4.95609 loss)
I0428 17:12:23.535979 8468 sgd_solver.cpp:105] Iteration 864, lr = 0.00842698
I0428 17:12:29.144287 8468 solver.cpp:218] Iteration 876 (2.13977 iter/s, 5.60808s/12 iters), loss = 4.83863
I0428 17:12:29.144330 8468 solver.cpp:237] Train net output #0: loss = 4.83863 (* 1 = 4.83863 loss)
I0428 17:12:29.144338 8468 sgd_solver.cpp:105] Iteration 876, lr = 0.00840698
I0428 17:12:34.529731 8468 solver.cpp:218] Iteration 888 (2.22834 iter/s, 5.38517s/12 iters), loss = 4.73402
I0428 17:12:34.529776 8468 solver.cpp:237] Train net output #0: loss = 4.73402 (* 1 = 4.73402 loss)
I0428 17:12:34.529786 8468 sgd_solver.cpp:105] Iteration 888, lr = 0.00838702
I0428 17:12:39.895275 8468 solver.cpp:218] Iteration 900 (2.23661 iter/s, 5.36527s/12 iters), loss = 4.83889
I0428 17:12:39.895401 8468 solver.cpp:237] Train net output #0: loss = 4.83889 (* 1 = 4.83889 loss)
I0428 17:12:39.895411 8468 sgd_solver.cpp:105] Iteration 900, lr = 0.0083671
I0428 17:12:44.042697 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:12:45.261747 8468 solver.cpp:218] Iteration 912 (2.23625 iter/s, 5.36612s/12 iters), loss = 4.92283
I0428 17:12:45.261795 8468 solver.cpp:237] Train net output #0: loss = 4.92283 (* 1 = 4.92283 loss)
I0428 17:12:45.261806 8468 sgd_solver.cpp:105] Iteration 912, lr = 0.00834724
I0428 17:12:47.400522 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel
I0428 17:12:48.034525 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate
I0428 17:12:48.490084 8468 solver.cpp:330] Iteration 918, Testing net (#0)
I0428 17:12:48.490113 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:12:52.564455 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:12:52.980118 8468 solver.cpp:397] Test net output #0: accuracy = 0.0318627
I0428 17:12:52.980165 8468 solver.cpp:397] Test net output #1: loss = 4.84772 (* 1 = 4.84772 loss)
I0428 17:12:55.129108 8468 solver.cpp:218] Iteration 924 (1.21619 iter/s, 9.86691s/12 iters), loss = 4.68118
I0428 17:12:55.129143 8468 solver.cpp:237] Train net output #0: loss = 4.68118 (* 1 = 4.68118 loss)
I0428 17:12:55.129151 8468 sgd_solver.cpp:105] Iteration 924, lr = 0.00832742
I0428 17:13:00.541551 8468 solver.cpp:218] Iteration 936 (2.21722 iter/s, 5.41218s/12 iters), loss = 4.69367
I0428 17:13:00.541592 8468 solver.cpp:237] Train net output #0: loss = 4.69367 (* 1 = 4.69367 loss)
I0428 17:13:00.541602 8468 sgd_solver.cpp:105] Iteration 936, lr = 0.00830765
I0428 17:13:06.234524 8468 solver.cpp:218] Iteration 948 (2.10797 iter/s, 5.69269s/12 iters), loss = 4.74001
I0428 17:13:06.234565 8468 solver.cpp:237] Train net output #0: loss = 4.74001 (* 1 = 4.74001 loss)
I0428 17:13:06.234575 8468 sgd_solver.cpp:105] Iteration 948, lr = 0.00828793
I0428 17:13:12.051380 8468 solver.cpp:218] Iteration 960 (2.06307 iter/s, 5.81657s/12 iters), loss = 4.86918
I0428 17:13:12.051497 8468 solver.cpp:237] Train net output #0: loss = 4.86918 (* 1 = 4.86918 loss)
I0428 17:13:12.051507 8468 sgd_solver.cpp:105] Iteration 960, lr = 0.00826825
I0428 17:13:17.674300 8468 solver.cpp:218] Iteration 972 (2.13425 iter/s, 5.62257s/12 iters), loss = 4.71764
I0428 17:13:17.674333 8468 solver.cpp:237] Train net output #0: loss = 4.71764 (* 1 = 4.71764 loss)
I0428 17:13:17.674341 8468 sgd_solver.cpp:105] Iteration 972, lr = 0.00824862
I0428 17:13:23.266707 8468 solver.cpp:218] Iteration 984 (2.14587 iter/s, 5.59214s/12 iters), loss = 4.70578
I0428 17:13:23.266752 8468 solver.cpp:237] Train net output #0: loss = 4.70578 (* 1 = 4.70578 loss)
I0428 17:13:23.266765 8468 sgd_solver.cpp:105] Iteration 984, lr = 0.00822903
I0428 17:13:28.622541 8468 solver.cpp:218] Iteration 996 (2.24066 iter/s, 5.35556s/12 iters), loss = 4.79299
I0428 17:13:28.622586 8468 solver.cpp:237] Train net output #0: loss = 4.79299 (* 1 = 4.79299 loss)
I0428 17:13:28.622596 8468 sgd_solver.cpp:105] Iteration 996, lr = 0.0082095
I0428 17:13:33.993476 8468 solver.cpp:218] Iteration 1008 (2.23436 iter/s, 5.37066s/12 iters), loss = 4.69624
I0428 17:13:33.993520 8468 solver.cpp:237] Train net output #0: loss = 4.69624 (* 1 = 4.69624 loss)
I0428 17:13:33.993530 8468 sgd_solver.cpp:105] Iteration 1008, lr = 0.00819001
I0428 17:13:35.067310 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:13:38.844363 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel
I0428 17:13:39.414171 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate
I0428 17:13:39.840910 8468 solver.cpp:330] Iteration 1020, Testing net (#0)
I0428 17:13:39.840934 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:13:43.980310 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:13:44.431190 8468 solver.cpp:397] Test net output #0: accuracy = 0.0428922
I0428 17:13:44.431228 8468 solver.cpp:397] Test net output #1: loss = 4.68907 (* 1 = 4.68907 loss)
I0428 17:13:44.562284 8468 solver.cpp:218] Iteration 1020 (1.13547 iter/s, 10.5683s/12 iters), loss = 4.81366
I0428 17:13:44.562325 8468 solver.cpp:237] Train net output #0: loss = 4.81366 (* 1 = 4.81366 loss)
I0428 17:13:44.562335 8468 sgd_solver.cpp:105] Iteration 1020, lr = 0.00817056
I0428 17:13:49.058552 8468 solver.cpp:218] Iteration 1032 (2.66902 iter/s, 4.49603s/12 iters), loss = 4.77885
I0428 17:13:49.058598 8468 solver.cpp:237] Train net output #0: loss = 4.77885 (* 1 = 4.77885 loss)
I0428 17:13:49.058609 8468 sgd_solver.cpp:105] Iteration 1032, lr = 0.00815116
I0428 17:13:54.576115 8468 solver.cpp:218] Iteration 1044 (2.17498 iter/s, 5.51728s/12 iters), loss = 4.7512
I0428 17:13:54.576164 8468 solver.cpp:237] Train net output #0: loss = 4.7512 (* 1 = 4.7512 loss)
I0428 17:13:54.576172 8468 sgd_solver.cpp:105] Iteration 1044, lr = 0.00813181
I0428 17:13:59.946899 8468 solver.cpp:218] Iteration 1056 (2.23442 iter/s, 5.37051s/12 iters), loss = 4.55923
I0428 17:13:59.946940 8468 solver.cpp:237] Train net output #0: loss = 4.55923 (* 1 = 4.55923 loss)
I0428 17:13:59.946950 8468 sgd_solver.cpp:105] Iteration 1056, lr = 0.0081125
I0428 17:14:05.334434 8468 solver.cpp:218] Iteration 1068 (2.22748 iter/s, 5.38727s/12 iters), loss = 4.67573
I0428 17:14:05.334481 8468 solver.cpp:237] Train net output #0: loss = 4.67573 (* 1 = 4.67573 loss)
I0428 17:14:05.334491 8468 sgd_solver.cpp:105] Iteration 1068, lr = 0.00809324
I0428 17:14:10.799676 8468 solver.cpp:218] Iteration 1080 (2.1958 iter/s, 5.46498s/12 iters), loss = 4.62943
I0428 17:14:10.799710 8468 solver.cpp:237] Train net output #0: loss = 4.62943 (* 1 = 4.62943 loss)
I0428 17:14:10.799718 8468 sgd_solver.cpp:105] Iteration 1080, lr = 0.00807403
I0428 17:14:16.245736 8468 solver.cpp:218] Iteration 1092 (2.20354 iter/s, 5.44579s/12 iters), loss = 4.66901
I0428 17:14:16.245878 8468 solver.cpp:237] Train net output #0: loss = 4.66901 (* 1 = 4.66901 loss)
I0428 17:14:16.245894 8468 sgd_solver.cpp:105] Iteration 1092, lr = 0.00805486
I0428 17:14:21.719558 8468 solver.cpp:218] Iteration 1104 (2.1924 iter/s, 5.47346s/12 iters), loss = 4.52904
I0428 17:14:21.719596 8468 solver.cpp:237] Train net output #0: loss = 4.52904 (* 1 = 4.52904 loss)
I0428 17:14:21.719604 8468 sgd_solver.cpp:105] Iteration 1104, lr = 0.00803573
I0428 17:14:25.216936 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:14:27.278514 8468 solver.cpp:218] Iteration 1116 (2.15878 iter/s, 5.55869s/12 iters), loss = 4.69837
I0428 17:14:27.278550 8468 solver.cpp:237] Train net output #0: loss = 4.69837 (* 1 = 4.69837 loss)
I0428 17:14:27.278558 8468 sgd_solver.cpp:105] Iteration 1116, lr = 0.00801666
I0428 17:14:29.517220 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel
I0428 17:14:30.117799 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate
I0428 17:14:30.551839 8468 solver.cpp:330] Iteration 1122, Testing net (#0)
I0428 17:14:30.551859 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:14:34.758577 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:14:35.299196 8468 solver.cpp:397] Test net output #0: accuracy = 0.0422794
I0428 17:14:35.299232 8468 solver.cpp:397] Test net output #1: loss = 4.58472 (* 1 = 4.58472 loss)
I0428 17:14:37.286199 8468 solver.cpp:218] Iteration 1128 (1.19913 iter/s, 10.0072s/12 iters), loss = 4.35168
I0428 17:14:37.286245 8468 solver.cpp:237] Train net output #0: loss = 4.35168 (* 1 = 4.35168 loss)
I0428 17:14:37.286255 8468 sgd_solver.cpp:105] Iteration 1128, lr = 0.00799762
I0428 17:14:42.819391 8468 solver.cpp:218] Iteration 1140 (2.16884 iter/s, 5.53292s/12 iters), loss = 4.33376
I0428 17:14:42.819427 8468 solver.cpp:237] Train net output #0: loss = 4.33376 (* 1 = 4.33376 loss)
I0428 17:14:42.819437 8468 sgd_solver.cpp:105] Iteration 1140, lr = 0.00797863
I0428 17:14:48.309165 8468 solver.cpp:218] Iteration 1152 (2.18599 iter/s, 5.48951s/12 iters), loss = 4.58961
I0428 17:14:48.309952 8468 solver.cpp:237] Train net output #0: loss = 4.58961 (* 1 = 4.58961 loss)
I0428 17:14:48.309962 8468 sgd_solver.cpp:105] Iteration 1152, lr = 0.00795969
I0428 17:14:53.708199 8468 solver.cpp:218] Iteration 1164 (2.22304 iter/s, 5.39802s/12 iters), loss = 4.45267
I0428 17:14:53.708243 8468 solver.cpp:237] Train net output #0: loss = 4.45267 (* 1 = 4.45267 loss)
I0428 17:14:53.708254 8468 sgd_solver.cpp:105] Iteration 1164, lr = 0.00794079
I0428 17:14:59.050473 8468 solver.cpp:218] Iteration 1176 (2.24635 iter/s, 5.34201s/12 iters), loss = 4.50819
I0428 17:14:59.050511 8468 solver.cpp:237] Train net output #0: loss = 4.50819 (* 1 = 4.50819 loss)
I0428 17:14:59.050521 8468 sgd_solver.cpp:105] Iteration 1176, lr = 0.00792194
I0428 17:15:04.587962 8468 solver.cpp:218] Iteration 1188 (2.16715 iter/s, 5.53722s/12 iters), loss = 4.42853
I0428 17:15:04.588007 8468 solver.cpp:237] Train net output #0: loss = 4.42853 (* 1 = 4.42853 loss)
I0428 17:15:04.588018 8468 sgd_solver.cpp:105] Iteration 1188, lr = 0.00790313
I0428 17:15:10.061631 8468 solver.cpp:218] Iteration 1200 (2.19242 iter/s, 5.4734s/12 iters), loss = 4.55942
I0428 17:15:10.061671 8468 solver.cpp:237] Train net output #0: loss = 4.55942 (* 1 = 4.55942 loss)
I0428 17:15:10.061681 8468 sgd_solver.cpp:105] Iteration 1200, lr = 0.00788437
I0428 17:15:15.504047 8468 solver.cpp:218] Iteration 1212 (2.20501 iter/s, 5.44215s/12 iters), loss = 4.61584
I0428 17:15:15.504086 8468 solver.cpp:237] Train net output #0: loss = 4.61584 (* 1 = 4.61584 loss)
I0428 17:15:15.504096 8468 sgd_solver.cpp:105] Iteration 1212, lr = 0.00786565
I0428 17:15:15.825845 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:15:20.733345 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel
I0428 17:15:21.392565 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate
I0428 17:15:21.843149 8468 solver.cpp:330] Iteration 1224, Testing net (#0)
I0428 17:15:21.843176 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:15:25.988382 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:15:26.521697 8468 solver.cpp:397] Test net output #0: accuracy = 0.0612745
I0428 17:15:26.521744 8468 solver.cpp:397] Test net output #1: loss = 4.37915 (* 1 = 4.37915 loss)
I0428 17:15:26.652791 8468 solver.cpp:218] Iteration 1224 (1.0764 iter/s, 11.1483s/12 iters), loss = 4.21562
I0428 17:15:26.652838 8468 solver.cpp:237] Train net output #0: loss = 4.21562 (* 1 = 4.21562 loss)
I0428 17:15:26.652848 8468 sgd_solver.cpp:105] Iteration 1224, lr = 0.00784697
I0428 17:15:31.307992 8468 solver.cpp:218] Iteration 1236 (2.5779 iter/s, 4.65495s/12 iters), loss = 4.37777
I0428 17:15:31.308035 8468 solver.cpp:237] Train net output #0: loss = 4.37777 (* 1 = 4.37777 loss)
I0428 17:15:31.308044 8468 sgd_solver.cpp:105] Iteration 1236, lr = 0.00782834
I0428 17:15:36.678403 8468 solver.cpp:218] Iteration 1248 (2.23458 iter/s, 5.37014s/12 iters), loss = 4.66711
I0428 17:15:36.678448 8468 solver.cpp:237] Train net output #0: loss = 4.66711 (* 1 = 4.66711 loss)
I0428 17:15:36.678457 8468 sgd_solver.cpp:105] Iteration 1248, lr = 0.00780976
I0428 17:15:42.041462 8468 solver.cpp:218] Iteration 1260 (2.23764 iter/s, 5.36279s/12 iters), loss = 4.58
I0428 17:15:42.041505 8468 solver.cpp:237] Train net output #0: loss = 4.58 (* 1 = 4.58 loss)
I0428 17:15:42.041515 8468 sgd_solver.cpp:105] Iteration 1260, lr = 0.00779122
I0428 17:15:47.380082 8468 solver.cpp:218] Iteration 1272 (2.24789 iter/s, 5.33835s/12 iters), loss = 4.44055
I0428 17:15:47.380127 8468 solver.cpp:237] Train net output #0: loss = 4.44055 (* 1 = 4.44055 loss)
I0428 17:15:47.380137 8468 sgd_solver.cpp:105] Iteration 1272, lr = 0.00777272
I0428 17:15:52.815054 8468 solver.cpp:218] Iteration 1284 (2.20803 iter/s, 5.43471s/12 iters), loss = 4.36151
I0428 17:15:52.815388 8468 solver.cpp:237] Train net output #0: loss = 4.36151 (* 1 = 4.36151 loss)
I0428 17:15:52.815400 8468 sgd_solver.cpp:105] Iteration 1284, lr = 0.00775426
I0428 17:15:58.233530 8468 solver.cpp:218] Iteration 1296 (2.21487 iter/s, 5.41792s/12 iters), loss = 4.408
I0428 17:15:58.233569 8468 solver.cpp:237] Train net output #0: loss = 4.408 (* 1 = 4.408 loss)
I0428 17:15:58.233582 8468 sgd_solver.cpp:105] Iteration 1296, lr = 0.00773585
I0428 17:16:03.611009 8468 solver.cpp:218] Iteration 1308 (2.23164 iter/s, 5.37722s/12 iters), loss = 4.47339
I0428 17:16:03.611050 8468 solver.cpp:237] Train net output #0: loss = 4.47339 (* 1 = 4.47339 loss)
I0428 17:16:03.611059 8468 sgd_solver.cpp:105] Iteration 1308, lr = 0.00771749
I0428 17:16:06.279927 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:16:08.947788 8468 solver.cpp:218] Iteration 1320 (2.24866 iter/s, 5.33652s/12 iters), loss = 4.42188
I0428 17:16:08.947829 8468 solver.cpp:237] Train net output #0: loss = 4.42188 (* 1 = 4.42188 loss)
I0428 17:16:08.947839 8468 sgd_solver.cpp:105] Iteration 1320, lr = 0.00769916
I0428 17:16:11.109923 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel
I0428 17:16:11.685899 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate
I0428 17:16:12.124800 8468 solver.cpp:330] Iteration 1326, Testing net (#0)
I0428 17:16:12.124819 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:16:16.108569 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:16:16.693035 8468 solver.cpp:397] Test net output #0: accuracy = 0.0637255
I0428 17:16:16.693064 8468 solver.cpp:397] Test net output #1: loss = 4.26672 (* 1 = 4.26672 loss)
I0428 17:16:18.741119 8468 solver.cpp:218] Iteration 1332 (1.22538 iter/s, 9.79289s/12 iters), loss = 4.47959
I0428 17:16:18.741163 8468 solver.cpp:237] Train net output #0: loss = 4.47959 (* 1 = 4.47959 loss)
I0428 17:16:18.741173 8468 sgd_solver.cpp:105] Iteration 1332, lr = 0.00768088
I0428 17:16:24.159502 8468 solver.cpp:218] Iteration 1344 (2.21479 iter/s, 5.41812s/12 iters), loss = 4.30435
I0428 17:16:24.159628 8468 solver.cpp:237] Train net output #0: loss = 4.30435 (* 1 = 4.30435 loss)
I0428 17:16:24.159641 8468 sgd_solver.cpp:105] Iteration 1344, lr = 0.00766265
I0428 17:16:29.654168 8468 solver.cpp:218] Iteration 1356 (2.18408 iter/s, 5.49431s/12 iters), loss = 4.31725
I0428 17:16:29.654214 8468 solver.cpp:237] Train net output #0: loss = 4.31725 (* 1 = 4.31725 loss)
I0428 17:16:29.654229 8468 sgd_solver.cpp:105] Iteration 1356, lr = 0.00764446
I0428 17:16:35.051504 8468 solver.cpp:218] Iteration 1368 (2.22343 iter/s, 5.39707s/12 iters), loss = 4.30708
I0428 17:16:35.051545 8468 solver.cpp:237] Train net output #0: loss = 4.30708 (* 1 = 4.30708 loss)
I0428 17:16:35.051556 8468 sgd_solver.cpp:105] Iteration 1368, lr = 0.00762631
I0428 17:16:35.051748 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:16:40.407663 8468 solver.cpp:218] Iteration 1380 (2.24052 iter/s, 5.35589s/12 iters), loss = 4.29363
I0428 17:16:40.407706 8468 solver.cpp:237] Train net output #0: loss = 4.29363 (* 1 = 4.29363 loss)
I0428 17:16:40.407716 8468 sgd_solver.cpp:105] Iteration 1380, lr = 0.0076082
I0428 17:16:45.793097 8468 solver.cpp:218] Iteration 1392 (2.22834 iter/s, 5.38517s/12 iters), loss = 4.21257
I0428 17:16:45.793138 8468 solver.cpp:237] Train net output #0: loss = 4.21257 (* 1 = 4.21257 loss)
I0428 17:16:45.793148 8468 sgd_solver.cpp:105] Iteration 1392, lr = 0.00759014
I0428 17:16:51.155963 8468 solver.cpp:218] Iteration 1404 (2.23772 iter/s, 5.3626s/12 iters), loss = 4.32133
I0428 17:16:51.156006 8468 solver.cpp:237] Train net output #0: loss = 4.32133 (* 1 = 4.32133 loss)
I0428 17:16:51.156016 8468 sgd_solver.cpp:105] Iteration 1404, lr = 0.00757212
I0428 17:16:56.132803 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:16:56.545696 8468 solver.cpp:218] Iteration 1416 (2.22657 iter/s, 5.38946s/12 iters), loss = 4.17097
I0428 17:16:56.545743 8468 solver.cpp:237] Train net output #0: loss = 4.17097 (* 1 = 4.17097 loss)
I0428 17:16:56.545754 8468 sgd_solver.cpp:105] Iteration 1416, lr = 0.00755414
I0428 17:17:01.443385 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel
I0428 17:17:02.537979 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate
I0428 17:17:03.948308 8468 solver.cpp:330] Iteration 1428, Testing net (#0)
I0428 17:17:03.948331 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:17:07.886624 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:17:08.503361 8468 solver.cpp:397] Test net output #0: accuracy = 0.0790441
I0428 17:17:08.503391 8468 solver.cpp:397] Test net output #1: loss = 4.21468 (* 1 = 4.21468 loss)
I0428 17:17:08.634099 8468 solver.cpp:218] Iteration 1428 (0.99273 iter/s, 12.0879s/12 iters), loss = 4.13891
I0428 17:17:08.634140 8468 solver.cpp:237] Train net output #0: loss = 4.13891 (* 1 = 4.13891 loss)
I0428 17:17:08.634150 8468 sgd_solver.cpp:105] Iteration 1428, lr = 0.0075362
I0428 17:17:13.324101 8468 solver.cpp:218] Iteration 1440 (2.55877 iter/s, 4.68976s/12 iters), loss = 4.04427
I0428 17:17:13.324144 8468 solver.cpp:237] Train net output #0: loss = 4.04427 (* 1 = 4.04427 loss)
I0428 17:17:13.324152 8468 sgd_solver.cpp:105] Iteration 1440, lr = 0.00751831
I0428 17:17:18.798471 8468 solver.cpp:218] Iteration 1452 (2.19214 iter/s, 5.4741s/12 iters), loss = 4.07235
I0428 17:17:18.798516 8468 solver.cpp:237] Train net output #0: loss = 4.07235 (* 1 = 4.07235 loss)
I0428 17:17:18.798527 8468 sgd_solver.cpp:105] Iteration 1452, lr = 0.00750046
I0428 17:17:24.217286 8468 solver.cpp:218] Iteration 1464 (2.21462 iter/s, 5.41855s/12 iters), loss = 4.21797
I0428 17:17:24.217325 8468 solver.cpp:237] Train net output #0: loss = 4.21797 (* 1 = 4.21797 loss)
I0428 17:17:24.217335 8468 sgd_solver.cpp:105] Iteration 1464, lr = 0.00748265
I0428 17:17:29.627152 8468 solver.cpp:218] Iteration 1476 (2.21828 iter/s, 5.4096s/12 iters), loss = 4.15995
I0428 17:17:29.627254 8468 solver.cpp:237] Train net output #0: loss = 4.15995 (* 1 = 4.15995 loss)
I0428 17:17:29.627264 8468 sgd_solver.cpp:105] Iteration 1476, lr = 0.00746489
I0428 17:17:35.168551 8468 solver.cpp:218] Iteration 1488 (2.16565 iter/s, 5.54107s/12 iters), loss = 3.98703
I0428 17:17:35.168601 8468 solver.cpp:237] Train net output #0: loss = 3.98703 (* 1 = 3.98703 loss)
I0428 17:17:35.168612 8468 sgd_solver.cpp:105] Iteration 1488, lr = 0.00744716
I0428 17:17:40.565022 8468 solver.cpp:218] Iteration 1500 (2.22379 iter/s, 5.3962s/12 iters), loss = 4.09219
I0428 17:17:40.565069 8468 solver.cpp:237] Train net output #0: loss = 4.09219 (* 1 = 4.09219 loss)
I0428 17:17:40.565079 8468 sgd_solver.cpp:105] Iteration 1500, lr = 0.00742948
I0428 17:17:45.978698 8468 solver.cpp:218] Iteration 1512 (2.21672 iter/s, 5.41341s/12 iters), loss = 3.9573
I0428 17:17:45.978737 8468 solver.cpp:237] Train net output #0: loss = 3.9573 (* 1 = 3.9573 loss)
I0428 17:17:45.978747 8468 sgd_solver.cpp:105] Iteration 1512, lr = 0.00741184
I0428 17:17:47.937486 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:17:51.506393 8468 solver.cpp:218] Iteration 1524 (2.17099 iter/s, 5.52743s/12 iters), loss = 3.65154
I0428 17:17:51.506438 8468 solver.cpp:237] Train net output #0: loss = 3.65154 (* 1 = 3.65154 loss)
I0428 17:17:51.506449 8468 sgd_solver.cpp:105] Iteration 1524, lr = 0.00739425
I0428 17:17:53.710327 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel
I0428 17:17:55.958719 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate
I0428 17:17:58.236944 8468 solver.cpp:330] Iteration 1530, Testing net (#0)
I0428 17:17:58.236974 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:18:02.175673 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:18:02.854951 8468 solver.cpp:397] Test net output #0: accuracy = 0.0839461
I0428 17:18:02.854993 8468 solver.cpp:397] Test net output #1: loss = 4.03887 (* 1 = 4.03887 loss)
I0428 17:18:04.799152 8468 solver.cpp:218] Iteration 1536 (0.902786 iter/s, 13.2922s/12 iters), loss = 3.9096
I0428 17:18:04.799204 8468 solver.cpp:237] Train net output #0: loss = 3.9096 (* 1 = 3.9096 loss)
I0428 17:18:04.799216 8468 sgd_solver.cpp:105] Iteration 1536, lr = 0.00737669
I0428 17:18:10.198578 8468 solver.cpp:218] Iteration 1548 (2.22257 iter/s, 5.39915s/12 iters), loss = 3.98094
I0428 17:18:10.198621 8468 solver.cpp:237] Train net output #0: loss = 3.98094 (* 1 = 3.98094 loss)
I0428 17:18:10.198629 8468 sgd_solver.cpp:105] Iteration 1548, lr = 0.00735918
I0428 17:18:15.564859 8468 solver.cpp:218] Iteration 1560 (2.2363 iter/s, 5.36602s/12 iters), loss = 3.86983
I0428 17:18:15.564908 8468 solver.cpp:237] Train net output #0: loss = 3.86983 (* 1 = 3.86983 loss)
I0428 17:18:15.564920 8468 sgd_solver.cpp:105] Iteration 1560, lr = 0.00734171
I0428 17:18:21.026067 8468 solver.cpp:218] Iteration 1572 (2.19742 iter/s, 5.46094s/12 iters), loss = 3.95333
I0428 17:18:21.026110 8468 solver.cpp:237] Train net output #0: loss = 3.95333 (* 1 = 3.95333 loss)
I0428 17:18:21.026120 8468 sgd_solver.cpp:105] Iteration 1572, lr = 0.00732427
I0428 17:18:26.395061 8468 solver.cpp:218] Iteration 1584 (2.23517 iter/s, 5.36873s/12 iters), loss = 3.69217
I0428 17:18:26.395105 8468 solver.cpp:237] Train net output #0: loss = 3.69217 (* 1 = 3.69217 loss)
I0428 17:18:26.395114 8468 sgd_solver.cpp:105] Iteration 1584, lr = 0.00730688
I0428 17:18:31.786880 8468 solver.cpp:218] Iteration 1596 (2.2257 iter/s, 5.39155s/12 iters), loss = 3.69305
I0428 17:18:31.786924 8468 solver.cpp:237] Train net output #0: loss = 3.69305 (* 1 = 3.69305 loss)
I0428 17:18:31.786934 8468 sgd_solver.cpp:105] Iteration 1596, lr = 0.00728954
I0428 17:18:37.259068 8468 solver.cpp:218] Iteration 1608 (2.19302 iter/s, 5.47192s/12 iters), loss = 3.73013
I0428 17:18:37.259172 8468 solver.cpp:237] Train net output #0: loss = 3.73013 (* 1 = 3.73013 loss)
I0428 17:18:37.259187 8468 sgd_solver.cpp:105] Iteration 1608, lr = 0.00727223
I0428 17:18:41.491746 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:18:42.685894 8468 solver.cpp:218] Iteration 1620 (2.21137 iter/s, 5.4265s/12 iters), loss = 3.82118
I0428 17:18:42.685940 8468 solver.cpp:237] Train net output #0: loss = 3.82118 (* 1 = 3.82118 loss)
I0428 17:18:42.685951 8468 sgd_solver.cpp:105] Iteration 1620, lr = 0.00725496
I0428 17:18:47.558706 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel
I0428 17:18:48.156687 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate
I0428 17:18:48.783658 8468 solver.cpp:330] Iteration 1632, Testing net (#0)
I0428 17:18:48.783689 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:18:52.657752 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:18:53.379070 8468 solver.cpp:397] Test net output #0: accuracy = 0.110907
I0428 17:18:53.379114 8468 solver.cpp:397] Test net output #1: loss = 3.90807 (* 1 = 3.90807 loss)
I0428 17:18:53.500370 8468 solver.cpp:218] Iteration 1632 (1.10967 iter/s, 10.814s/12 iters), loss = 3.86968
I0428 17:18:53.500433 8468 solver.cpp:237] Train net output #0: loss = 3.86968 (* 1 = 3.86968 loss)
I0428 17:18:53.500447 8468 sgd_solver.cpp:105] Iteration 1632, lr = 0.00723774
I0428 17:18:58.000432 8468 solver.cpp:218] Iteration 1644 (2.66678 iter/s, 4.49981s/12 iters), loss = 3.72193
I0428 17:18:58.000473 8468 solver.cpp:237] Train net output #0: loss = 3.72193 (* 1 = 3.72193 loss)
I0428 17:18:58.000483 8468 sgd_solver.cpp:105] Iteration 1644, lr = 0.00722056
I0428 17:19:03.363554 8468 solver.cpp:218] Iteration 1656 (2.23761 iter/s, 5.36286s/12 iters), loss = 3.85367
I0428 17:19:03.363600 8468 solver.cpp:237] Train net output #0: loss = 3.85367 (* 1 = 3.85367 loss)
I0428 17:19:03.363612 8468 sgd_solver.cpp:105] Iteration 1656, lr = 0.00720341
I0428 17:19:08.801438 8468 solver.cpp:218] Iteration 1668 (2.20685 iter/s, 5.43762s/12 iters), loss = 3.93195
I0428 17:19:08.801565 8468 solver.cpp:237] Train net output #0: loss = 3.93195 (* 1 = 3.93195 loss)
I0428 17:19:08.801576 8468 sgd_solver.cpp:105] Iteration 1668, lr = 0.00718631
I0428 17:19:14.229370 8468 solver.cpp:218] Iteration 1680 (2.21093 iter/s, 5.42758s/12 iters), loss = 3.67725
I0428 17:19:14.229411 8468 solver.cpp:237] Train net output #0: loss = 3.67725 (* 1 = 3.67725 loss)
I0428 17:19:14.229421 8468 sgd_solver.cpp:105] Iteration 1680, lr = 0.00716925
I0428 17:19:19.616279 8468 solver.cpp:218] Iteration 1692 (2.22773 iter/s, 5.38664s/12 iters), loss = 3.70248
I0428 17:19:19.616331 8468 solver.cpp:237] Train net output #0: loss = 3.70248 (* 1 = 3.70248 loss)
I0428 17:19:19.616343 8468 sgd_solver.cpp:105] Iteration 1692, lr = 0.00715223
I0428 17:19:26.235999 8468 solver.cpp:218] Iteration 1704 (1.81286 iter/s, 6.61939s/12 iters), loss = 3.93202
I0428 17:19:26.236065 8468 solver.cpp:237] Train net output #0: loss = 3.93202 (* 1 = 3.93202 loss)
I0428 17:19:26.236079 8468 sgd_solver.cpp:105] Iteration 1704, lr = 0.00713525
I0428 17:19:33.034912 8468 solver.cpp:218] Iteration 1716 (1.76508 iter/s, 6.79857s/12 iters), loss = 3.70874
I0428 17:19:33.034966 8468 solver.cpp:237] Train net output #0: loss = 3.70874 (* 1 = 3.70874 loss)
I0428 17:19:33.034978 8468 sgd_solver.cpp:105] Iteration 1716, lr = 0.00711831
I0428 17:19:34.375176 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:19:38.728271 8468 solver.cpp:218] Iteration 1728 (2.10782 iter/s, 5.69308s/12 iters), loss = 3.84139
I0428 17:19:38.728313 8468 solver.cpp:237] Train net output #0: loss = 3.84139 (* 1 = 3.84139 loss)
I0428 17:19:38.728323 8468 sgd_solver.cpp:105] Iteration 1728, lr = 0.00710141
I0428 17:19:40.970368 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel
I0428 17:19:41.930577 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate
I0428 17:19:43.594262 8468 solver.cpp:330] Iteration 1734, Testing net (#0)
I0428 17:19:43.594285 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:19:47.390987 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:19:48.126010 8468 solver.cpp:397] Test net output #0: accuracy = 0.139093
I0428 17:19:48.126039 8468 solver.cpp:397] Test net output #1: loss = 3.74527 (* 1 = 3.74527 loss)
I0428 17:19:50.167234 8468 solver.cpp:218] Iteration 1740 (1.04909 iter/s, 11.4385s/12 iters), loss = 3.7069
I0428 17:19:50.167277 8468 solver.cpp:237] Train net output #0: loss = 3.7069 (* 1 = 3.7069 loss)
I0428 17:19:50.167287 8468 sgd_solver.cpp:105] Iteration 1740, lr = 0.00708455
I0428 17:19:55.617883 8468 solver.cpp:218] Iteration 1752 (2.20168 iter/s, 5.45038s/12 iters), loss = 3.70593
I0428 17:19:55.617931 8468 solver.cpp:237] Train net output #0: loss = 3.70593 (* 1 = 3.70593 loss)
I0428 17:19:55.617941 8468 sgd_solver.cpp:105] Iteration 1752, lr = 0.00706773
I0428 17:20:01.197592 8468 solver.cpp:218] Iteration 1764 (2.15076 iter/s, 5.57943s/12 iters), loss = 3.78703
I0428 17:20:01.197643 8468 solver.cpp:237] Train net output #0: loss = 3.78703 (* 1 = 3.78703 loss)
I0428 17:20:01.197651 8468 sgd_solver.cpp:105] Iteration 1764, lr = 0.00705094
I0428 17:20:06.643080 8468 solver.cpp:218] Iteration 1776 (2.20377 iter/s, 5.44522s/12 iters), loss = 3.56465
I0428 17:20:06.643126 8468 solver.cpp:237] Train net output #0: loss = 3.56465 (* 1 = 3.56465 loss)
I0428 17:20:06.643134 8468 sgd_solver.cpp:105] Iteration 1776, lr = 0.0070342
I0428 17:20:12.212182 8468 solver.cpp:218] Iteration 1788 (2.15485 iter/s, 5.56883s/12 iters), loss = 3.6503
I0428 17:20:12.212323 8468 solver.cpp:237] Train net output #0: loss = 3.6503 (* 1 = 3.6503 loss)
I0428 17:20:12.212333 8468 sgd_solver.cpp:105] Iteration 1788, lr = 0.0070175
I0428 17:20:17.751186 8468 solver.cpp:218] Iteration 1800 (2.1666 iter/s, 5.53864s/12 iters), loss = 3.62357
I0428 17:20:17.751233 8468 solver.cpp:237] Train net output #0: loss = 3.62357 (* 1 = 3.62357 loss)
I0428 17:20:17.751245 8468 sgd_solver.cpp:105] Iteration 1800, lr = 0.00700084
I0428 17:20:23.348393 8468 solver.cpp:218] Iteration 1812 (2.14403 iter/s, 5.59693s/12 iters), loss = 3.55268
I0428 17:20:23.348436 8468 solver.cpp:237] Train net output #0: loss = 3.55268 (* 1 = 3.55268 loss)
I0428 17:20:23.348445 8468 sgd_solver.cpp:105] Iteration 1812, lr = 0.00698422
I0428 17:20:26.792870 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:20:28.766366 8468 solver.cpp:218] Iteration 1824 (2.21496 iter/s, 5.41771s/12 iters), loss = 3.73003
I0428 17:20:28.766403 8468 solver.cpp:237] Train net output #0: loss = 3.73003 (* 1 = 3.73003 loss)
I0428 17:20:28.766413 8468 sgd_solver.cpp:105] Iteration 1824, lr = 0.00696764
I0428 17:20:35.315822 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel
I0428 17:20:36.930574 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate
I0428 17:20:38.397437 8468 solver.cpp:330] Iteration 1836, Testing net (#0)
I0428 17:20:38.397460 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:20:43.436605 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:20:44.376669 8468 solver.cpp:397] Test net output #0: accuracy = 0.133578
I0428 17:20:44.376698 8468 solver.cpp:397] Test net output #1: loss = 3.68746 (* 1 = 3.68746 loss)
I0428 17:20:44.503706 8468 solver.cpp:218] Iteration 1836 (0.76255 iter/s, 15.7367s/12 iters), loss = 3.42551
I0428 17:20:44.503760 8468 solver.cpp:237] Train net output #0: loss = 3.42551 (* 1 = 3.42551 loss)
I0428 17:20:44.503775 8468 sgd_solver.cpp:105] Iteration 1836, lr = 0.0069511
I0428 17:20:49.095917 8468 solver.cpp:218] Iteration 1848 (2.61326 iter/s, 4.59197s/12 iters), loss = 3.49271
I0428 17:20:49.095959 8468 solver.cpp:237] Train net output #0: loss = 3.49271 (* 1 = 3.49271 loss)
I0428 17:20:49.095969 8468 sgd_solver.cpp:105] Iteration 1848, lr = 0.00693459
I0428 17:20:54.604562 8468 solver.cpp:218] Iteration 1860 (2.1785 iter/s, 5.50838s/12 iters), loss = 3.66506
I0428 17:20:54.604602 8468 solver.cpp:237] Train net output #0: loss = 3.66506 (* 1 = 3.66506 loss)
I0428 17:20:54.604611 8468 sgd_solver.cpp:105] Iteration 1860, lr = 0.00691813
I0428 17:21:00.111090 8468 solver.cpp:218] Iteration 1872 (2.17934 iter/s, 5.50626s/12 iters), loss = 3.76481
I0428 17:21:00.111135 8468 solver.cpp:237] Train net output #0: loss = 3.76481 (* 1 = 3.76481 loss)
I0428 17:21:00.111147 8468 sgd_solver.cpp:105] Iteration 1872, lr = 0.0069017
I0428 17:21:05.815102 8468 solver.cpp:218] Iteration 1884 (2.10388 iter/s, 5.70374s/12 iters), loss = 3.88833
I0428 17:21:05.815143 8468 solver.cpp:237] Train net output #0: loss = 3.88833 (* 1 = 3.88833 loss)
I0428 17:21:05.815153 8468 sgd_solver.cpp:105] Iteration 1884, lr = 0.00688532
I0428 17:21:11.243142 8468 solver.cpp:218] Iteration 1896 (2.21085 iter/s, 5.42778s/12 iters), loss = 3.56089
I0428 17:21:11.243188 8468 solver.cpp:237] Train net output #0: loss = 3.56089 (* 1 = 3.56089 loss)
I0428 17:21:11.243198 8468 sgd_solver.cpp:105] Iteration 1896, lr = 0.00686897
I0428 17:21:16.645087 8468 solver.cpp:218] Iteration 1908 (2.22153 iter/s, 5.40168s/12 iters), loss = 3.61566
I0428 17:21:16.645205 8468 solver.cpp:237] Train net output #0: loss = 3.61566 (* 1 = 3.61566 loss)
I0428 17:21:16.645215 8468 sgd_solver.cpp:105] Iteration 1908, lr = 0.00685266
I0428 17:21:22.009874 8468 solver.cpp:218] Iteration 1920 (2.23695 iter/s, 5.36445s/12 iters), loss = 3.37863
I0428 17:21:22.009918 8468 solver.cpp:237] Train net output #0: loss = 3.37863 (* 1 = 3.37863 loss)
I0428 17:21:22.009927 8468 sgd_solver.cpp:105] Iteration 1920, lr = 0.00683639
I0428 17:21:22.337713 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:21:27.476420 8468 solver.cpp:218] Iteration 1932 (2.19528 iter/s, 5.46628s/12 iters), loss = 3.24738
I0428 17:21:27.476459 8468 solver.cpp:237] Train net output #0: loss = 3.24738 (* 1 = 3.24738 loss)
I0428 17:21:27.476469 8468 sgd_solver.cpp:105] Iteration 1932, lr = 0.00682016
I0428 17:21:29.622498 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel
I0428 17:21:30.820369 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate
I0428 17:21:34.899111 8468 solver.cpp:330] Iteration 1938, Testing net (#0)
I0428 17:21:34.899138 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:21:38.684957 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:21:39.502570 8468 solver.cpp:397] Test net output #0: accuracy = 0.158088
I0428 17:21:39.502609 8468 solver.cpp:397] Test net output #1: loss = 3.62667 (* 1 = 3.62667 loss)
I0428 17:21:41.560818 8468 solver.cpp:218] Iteration 1944 (0.852042 iter/s, 14.0838s/12 iters), loss = 3.59444
I0428 17:21:41.560856 8468 solver.cpp:237] Train net output #0: loss = 3.59444 (* 1 = 3.59444 loss)
I0428 17:21:41.560868 8468 sgd_solver.cpp:105] Iteration 1944, lr = 0.00680397
I0428 17:21:47.033947 8468 solver.cpp:218] Iteration 1956 (2.19264 iter/s, 5.47286s/12 iters), loss = 3.6179
I0428 17:21:47.034158 8468 solver.cpp:237] Train net output #0: loss = 3.6179 (* 1 = 3.6179 loss)
I0428 17:21:47.034198 8468 sgd_solver.cpp:105] Iteration 1956, lr = 0.00678782
I0428 17:21:52.490379 8468 solver.cpp:218] Iteration 1968 (2.19941 iter/s, 5.45601s/12 iters), loss = 3.60205
I0428 17:21:52.490419 8468 solver.cpp:237] Train net output #0: loss = 3.60205 (* 1 = 3.60205 loss)
I0428 17:21:52.490428 8468 sgd_solver.cpp:105] Iteration 1968, lr = 0.0067717
I0428 17:21:58.047560 8468 solver.cpp:218] Iteration 1980 (2.15947 iter/s, 5.55691s/12 iters), loss = 3.38457
I0428 17:21:58.047605 8468 solver.cpp:237] Train net output #0: loss = 3.38457 (* 1 = 3.38457 loss)
I0428 17:21:58.047614 8468 sgd_solver.cpp:105] Iteration 1980, lr = 0.00675562
I0428 17:22:05.468274 8468 solver.cpp:218] Iteration 1992 (1.61717 iter/s, 7.42036s/12 iters), loss = 3.34913
I0428 17:22:05.474328 8468 solver.cpp:237] Train net output #0: loss = 3.34913 (* 1 = 3.34913 loss)
I0428 17:22:05.474356 8468 sgd_solver.cpp:105] Iteration 1992, lr = 0.00673958
I0428 17:22:12.122825 8468 solver.cpp:218] Iteration 2004 (1.80499 iter/s, 6.64825s/12 iters), loss = 3.43513
I0428 17:22:12.122867 8468 solver.cpp:237] Train net output #0: loss = 3.43513 (* 1 = 3.43513 loss)
I0428 17:22:12.122876 8468 sgd_solver.cpp:105] Iteration 2004, lr = 0.00672358
I0428 17:22:17.485971 8468 solver.cpp:218] Iteration 2016 (2.2376 iter/s, 5.36288s/12 iters), loss = 3.26304
I0428 17:22:17.486358 8468 solver.cpp:237] Train net output #0: loss = 3.26304 (* 1 = 3.26304 loss)
I0428 17:22:17.486368 8468 sgd_solver.cpp:105] Iteration 2016, lr = 0.00670762
I0428 17:22:20.258517 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:22:22.939996 8468 solver.cpp:218] Iteration 2028 (2.20046 iter/s, 5.45342s/12 iters), loss = 3.25339
I0428 17:22:22.940040 8468 solver.cpp:237] Train net output #0: loss = 3.25339 (* 1 = 3.25339 loss)
I0428 17:22:22.940049 8468 sgd_solver.cpp:105] Iteration 2028, lr = 0.00669169
I0428 17:22:27.796748 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel
I0428 17:22:28.403828 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate
I0428 17:22:28.849102 8468 solver.cpp:330] Iteration 2040, Testing net (#0)
I0428 17:22:28.849123 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:22:32.491737 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:22:33.354507 8468 solver.cpp:397] Test net output #0: accuracy = 0.158701
I0428 17:22:33.354555 8468 solver.cpp:397] Test net output #1: loss = 3.54367 (* 1 = 3.54367 loss)
I0428 17:22:33.484006 8468 solver.cpp:218] Iteration 2040 (1.13814 iter/s, 10.5435s/12 iters), loss = 3.42819
I0428 17:22:33.484062 8468 solver.cpp:237] Train net output #0: loss = 3.42819 (* 1 = 3.42819 loss)
I0428 17:22:33.484073 8468 sgd_solver.cpp:105] Iteration 2040, lr = 0.00667581
I0428 17:22:38.008842 8468 solver.cpp:218] Iteration 2052 (2.65217 iter/s, 4.5246s/12 iters), loss = 3.31466
I0428 17:22:38.008877 8468 solver.cpp:237] Train net output #0: loss = 3.31466 (* 1 = 3.31466 loss)
I0428 17:22:38.008886 8468 sgd_solver.cpp:105] Iteration 2052, lr = 0.00665996
I0428 17:22:38.375455 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:22:43.405364 8468 solver.cpp:218] Iteration 2064 (2.22376 iter/s, 5.39626s/12 iters), loss = 3.29423
I0428 17:22:43.405409 8468 solver.cpp:237] Train net output #0: loss = 3.29423 (* 1 = 3.29423 loss)
I0428 17:22:43.405418 8468 sgd_solver.cpp:105] Iteration 2064, lr = 0.00664414
I0428 17:22:48.797094 8468 solver.cpp:218] Iteration 2076 (2.22574 iter/s, 5.39146s/12 iters), loss = 3.26617
I0428 17:22:48.797247 8468 solver.cpp:237] Train net output #0: loss = 3.26617 (* 1 = 3.26617 loss)
I0428 17:22:48.797259 8468 sgd_solver.cpp:105] Iteration 2076, lr = 0.00662837
I0428 17:22:54.267096 8468 solver.cpp:218] Iteration 2088 (2.19393 iter/s, 5.46962s/12 iters), loss = 3.14062
I0428 17:22:54.267138 8468 solver.cpp:237] Train net output #0: loss = 3.14062 (* 1 = 3.14062 loss)
I0428 17:22:54.267148 8468 sgd_solver.cpp:105] Iteration 2088, lr = 0.00661263
I0428 17:23:02.115865 8468 solver.cpp:218] Iteration 2100 (1.52897 iter/s, 7.8484s/12 iters), loss = 3.29223
I0428 17:23:02.128559 8468 solver.cpp:237] Train net output #0: loss = 3.29223 (* 1 = 3.29223 loss)
I0428 17:23:02.128585 8468 sgd_solver.cpp:105] Iteration 2100, lr = 0.00659693
I0428 17:23:10.109184 8468 solver.cpp:218] Iteration 2112 (1.5037 iter/s, 7.98032s/12 iters), loss = 3.22899
I0428 17:23:10.109241 8468 solver.cpp:237] Train net output #0: loss = 3.22899 (* 1 = 3.22899 loss)
I0428 17:23:10.109252 8468 sgd_solver.cpp:105] Iteration 2112, lr = 0.00658127
I0428 17:23:16.518862 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:23:16.987742 8468 solver.cpp:218] Iteration 2124 (1.74464 iter/s, 6.87822s/12 iters), loss = 3.31118
I0428 17:23:16.987807 8468 solver.cpp:237] Train net output #0: loss = 3.31118 (* 1 = 3.31118 loss)
I0428 17:23:16.987818 8468 sgd_solver.cpp:105] Iteration 2124, lr = 0.00656564
I0428 17:23:23.642092 8468 solver.cpp:218] Iteration 2136 (1.80342 iter/s, 6.65401s/12 iters), loss = 3.45711
I0428 17:23:23.642226 8468 solver.cpp:237] Train net output #0: loss = 3.45711 (* 1 = 3.45711 loss)
I0428 17:23:23.642239 8468 sgd_solver.cpp:105] Iteration 2136, lr = 0.00655006
I0428 17:23:26.469543 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel
I0428 17:23:27.427289 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate
I0428 17:23:30.150591 8468 solver.cpp:330] Iteration 2142, Testing net (#0)
I0428 17:23:30.150611 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:23:34.997936 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:23:36.237815 8468 solver.cpp:397] Test net output #0: accuracy = 0.18076
I0428 17:23:36.237855 8468 solver.cpp:397] Test net output #1: loss = 3.40808 (* 1 = 3.40808 loss)
I0428 17:23:38.633059 8468 solver.cpp:218] Iteration 2148 (0.800521 iter/s, 14.9902s/12 iters), loss = 3.20639
I0428 17:23:38.633114 8468 solver.cpp:237] Train net output #0: loss = 3.20639 (* 1 = 3.20639 loss)
I0428 17:23:38.633126 8468 sgd_solver.cpp:105] Iteration 2148, lr = 0.00653451
I0428 17:23:45.302579 8468 solver.cpp:218] Iteration 2160 (1.79932 iter/s, 6.66919s/12 iters), loss = 3.18811
I0428 17:23:45.302635 8468 solver.cpp:237] Train net output #0: loss = 3.18811 (* 1 = 3.18811 loss)
I0428 17:23:45.302647 8468 sgd_solver.cpp:105] Iteration 2160, lr = 0.00651899
I0428 17:23:52.206758 8468 solver.cpp:218] Iteration 2172 (1.73816 iter/s, 6.90384s/12 iters), loss = 3.33188
I0428 17:23:52.206812 8468 solver.cpp:237] Train net output #0: loss = 3.33188 (* 1 = 3.33188 loss)
I0428 17:23:52.206825 8468 sgd_solver.cpp:105] Iteration 2172, lr = 0.00650351
I0428 17:23:59.002820 8468 solver.cpp:218] Iteration 2184 (1.76582 iter/s, 6.79572s/12 iters), loss = 3.23883
I0428 17:23:59.003002 8468 solver.cpp:237] Train net output #0: loss = 3.23883 (* 1 = 3.23883 loss)
I0428 17:23:59.003015 8468 sgd_solver.cpp:105] Iteration 2184, lr = 0.00648807
I0428 17:24:05.567088 8468 solver.cpp:218] Iteration 2196 (1.8282 iter/s, 6.56382s/12 iters), loss = 3.18041
I0428 17:24:05.567135 8468 solver.cpp:237] Train net output #0: loss = 3.18041 (* 1 = 3.18041 loss)
I0428 17:24:05.567144 8468 sgd_solver.cpp:105] Iteration 2196, lr = 0.00647267
I0428 17:24:12.237692 8468 solver.cpp:218] Iteration 2208 (1.79902 iter/s, 6.67028s/12 iters), loss = 3.19836
I0428 17:24:12.237744 8468 solver.cpp:237] Train net output #0: loss = 3.19836 (* 1 = 3.19836 loss)
I0428 17:24:12.237754 8468 sgd_solver.cpp:105] Iteration 2208, lr = 0.0064573
I0428 17:24:19.242553 8468 solver.cpp:218] Iteration 2220 (1.71318 iter/s, 7.00452s/12 iters), loss = 3.12636
I0428 17:24:19.242609 8468 solver.cpp:237] Train net output #0: loss = 3.12636 (* 1 = 3.12636 loss)
I0428 17:24:19.242620 8468 sgd_solver.cpp:105] Iteration 2220, lr = 0.00644197
I0428 17:24:21.713809 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:24:26.098119 8468 solver.cpp:218] Iteration 2232 (1.75049 iter/s, 6.85523s/12 iters), loss = 2.76746
I0428 17:24:26.098176 8468 solver.cpp:237] Train net output #0: loss = 2.76746 (* 1 = 2.76746 loss)
I0428 17:24:26.098188 8468 sgd_solver.cpp:105] Iteration 2232, lr = 0.00642668
I0428 17:24:31.050856 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel
I0428 17:24:31.697371 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate
I0428 17:24:32.735823 8468 solver.cpp:330] Iteration 2244, Testing net (#0)
I0428 17:24:32.735842 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:24:36.486995 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:24:37.568284 8468 solver.cpp:397] Test net output #0: accuracy = 0.178309
I0428 17:24:37.568313 8468 solver.cpp:397] Test net output #1: loss = 3.36866 (* 1 = 3.36866 loss)
I0428 17:24:37.699061 8468 solver.cpp:218] Iteration 2244 (1.03445 iter/s, 11.6004s/12 iters), loss = 2.8291
I0428 17:24:37.699115 8468 solver.cpp:237] Train net output #0: loss = 2.8291 (* 1 = 2.8291 loss)
I0428 17:24:37.699126 8468 sgd_solver.cpp:105] Iteration 2244, lr = 0.00641142
I0428 17:24:42.226796 8468 solver.cpp:218] Iteration 2256 (2.65047 iter/s, 4.52749s/12 iters), loss = 3.10117
I0428 17:24:42.226840 8468 solver.cpp:237] Train net output #0: loss = 3.10117 (* 1 = 3.10117 loss)
I0428 17:24:42.226850 8468 sgd_solver.cpp:105] Iteration 2256, lr = 0.0063962
I0428 17:24:47.584262 8468 solver.cpp:218] Iteration 2268 (2.23998 iter/s, 5.3572s/12 iters), loss = 3.02105
I0428 17:24:47.584306 8468 solver.cpp:237] Train net output #0: loss = 3.02105 (* 1 = 3.02105 loss)
I0428 17:24:47.584317 8468 sgd_solver.cpp:105] Iteration 2268, lr = 0.00638101
I0428 17:24:53.014900 8468 solver.cpp:218] Iteration 2280 (2.2098 iter/s, 5.43037s/12 iters), loss = 3.10771
I0428 17:24:53.014950 8468 solver.cpp:237] Train net output #0: loss = 3.10771 (* 1 = 3.10771 loss)
I0428 17:24:53.014959 8468 sgd_solver.cpp:105] Iteration 2280, lr = 0.00636586
I0428 17:25:00.532564 8468 solver.cpp:218] Iteration 2292 (1.59967 iter/s, 7.50156s/12 iters), loss = 3.07415
I0428 17:25:00.532620 8468 solver.cpp:237] Train net output #0: loss = 3.07415 (* 1 = 3.07415 loss)
I0428 17:25:00.532632 8468 sgd_solver.cpp:105] Iteration 2292, lr = 0.00635075
I0428 17:25:10.352058 8468 solver.cpp:218] Iteration 2304 (1.22212 iter/s, 9.81904s/12 iters), loss = 2.90217
I0428 17:25:10.352232 8468 solver.cpp:237] Train net output #0: loss = 2.90217 (* 1 = 2.90217 loss)
I0428 17:25:10.352246 8468 sgd_solver.cpp:105] Iteration 2304, lr = 0.00633567
I0428 17:25:18.560339 8468 solver.cpp:218] Iteration 2316 (1.46203 iter/s, 8.20777s/12 iters), loss = 3.05273
I0428 17:25:18.560397 8468 solver.cpp:237] Train net output #0: loss = 3.05273 (* 1 = 3.05273 loss)
I0428 17:25:18.560410 8468 sgd_solver.cpp:105] Iteration 2316, lr = 0.00632063
I0428 17:25:23.585989 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:25:25.035759 8468 solver.cpp:218] Iteration 2328 (1.85326 iter/s, 6.47509s/12 iters), loss = 2.94265
I0428 17:25:25.035815 8468 solver.cpp:237] Train net output #0: loss = 2.94265 (* 1 = 2.94265 loss)
I0428 17:25:25.035826 8468 sgd_solver.cpp:105] Iteration 2328, lr = 0.00630562
I0428 17:25:31.614753 8468 solver.cpp:218] Iteration 2340 (1.82408 iter/s, 6.57867s/12 iters), loss = 2.7241
I0428 17:25:31.620810 8468 solver.cpp:237] Train net output #0: loss = 2.7241 (* 1 = 2.7241 loss)
I0428 17:25:31.620836 8468 sgd_solver.cpp:105] Iteration 2340, lr = 0.00629065
I0428 17:25:34.471979 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel
I0428 17:25:36.997349 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate
I0428 17:25:39.109495 8468 solver.cpp:330] Iteration 2346, Testing net (#0)
I0428 17:25:39.109520 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:25:43.829397 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:25:45.167310 8468 solver.cpp:397] Test net output #0: accuracy = 0.205882
I0428 17:25:45.167351 8468 solver.cpp:397] Test net output #1: loss = 3.23485 (* 1 = 3.23485 loss)
I0428 17:25:47.423992 8468 solver.cpp:218] Iteration 2352 (0.75937 iter/s, 15.8026s/12 iters), loss = 2.77624
I0428 17:25:47.424058 8468 solver.cpp:237] Train net output #0: loss = 2.77624 (* 1 = 2.77624 loss)
I0428 17:25:47.424072 8468 sgd_solver.cpp:105] Iteration 2352, lr = 0.00627571
I0428 17:25:54.164466 8468 solver.cpp:218] Iteration 2364 (1.78038 iter/s, 6.74013s/12 iters), loss = 2.92037
I0428 17:25:54.164561 8468 solver.cpp:237] Train net output #0: loss = 2.92037 (* 1 = 2.92037 loss)
I0428 17:25:54.164574 8468 sgd_solver.cpp:105] Iteration 2364, lr = 0.00626081
I0428 17:26:00.751896 8468 solver.cpp:218] Iteration 2376 (1.82175 iter/s, 6.58706s/12 iters), loss = 3.1406
I0428 17:26:00.751941 8468 solver.cpp:237] Train net output #0: loss = 3.1406 (* 1 = 3.1406 loss)
I0428 17:26:00.751950 8468 sgd_solver.cpp:105] Iteration 2376, lr = 0.00624595
I0428 17:26:07.708673 8468 solver.cpp:218] Iteration 2388 (1.72502 iter/s, 6.95644s/12 iters), loss = 2.77269
I0428 17:26:07.708731 8468 solver.cpp:237] Train net output #0: loss = 2.77269 (* 1 = 2.77269 loss)
I0428 17:26:07.708745 8468 sgd_solver.cpp:105] Iteration 2388, lr = 0.00623112
I0428 17:26:14.592926 8468 solver.cpp:218] Iteration 2400 (1.7432 iter/s, 6.88391s/12 iters), loss = 2.94094
I0428 17:26:14.593068 8468 solver.cpp:237] Train net output #0: loss = 2.94094 (* 1 = 2.94094 loss)
I0428 17:26:14.593080 8468 sgd_solver.cpp:105] Iteration 2400, lr = 0.00621633
I0428 17:26:21.294103 8468 solver.cpp:218] Iteration 2412 (1.79084 iter/s, 6.70076s/12 iters), loss = 3.05969
I0428 17:26:21.294153 8468 solver.cpp:237] Train net output #0: loss = 3.05969 (* 1 = 3.05969 loss)
I0428 17:26:21.294165 8468 sgd_solver.cpp:105] Iteration 2412, lr = 0.00620157
I0428 17:26:27.080397 8468 solver.cpp:218] Iteration 2424 (2.07397 iter/s, 5.78601s/12 iters), loss = 3.05228
I0428 17:26:27.080436 8468 solver.cpp:237] Train net output #0: loss = 3.05228 (* 1 = 3.05228 loss)
I0428 17:26:27.080446 8468 sgd_solver.cpp:105] Iteration 2424, lr = 0.00618684
I0428 17:26:28.201804 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:26:32.464663 8468 solver.cpp:218] Iteration 2436 (2.22883 iter/s, 5.384s/12 iters), loss = 3.15231
I0428 17:26:32.464709 8468 solver.cpp:237] Train net output #0: loss = 3.15231 (* 1 = 3.15231 loss)
I0428 17:26:32.464718 8468 sgd_solver.cpp:105] Iteration 2436, lr = 0.00617215
I0428 17:26:37.406975 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel
I0428 17:26:38.712987 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate
I0428 17:26:39.156949 8468 solver.cpp:330] Iteration 2448, Testing net (#0)
I0428 17:26:39.156972 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:26:42.627274 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:26:43.651152 8468 solver.cpp:397] Test net output #0: accuracy = 0.208946
I0428 17:26:43.651185 8468 solver.cpp:397] Test net output #1: loss = 3.23616 (* 1 = 3.23616 loss)
I0428 17:26:43.781888 8468 solver.cpp:218] Iteration 2448 (1.06038 iter/s, 11.3167s/12 iters), loss = 2.88839
I0428 17:26:43.781932 8468 solver.cpp:237] Train net output #0: loss = 2.88839 (* 1 = 2.88839 loss)
I0428 17:26:43.781942 8468 sgd_solver.cpp:105] Iteration 2448, lr = 0.0061575
I0428 17:26:50.217931 8468 solver.cpp:218] Iteration 2460 (1.86681 iter/s, 6.42809s/12 iters), loss = 2.68653
I0428 17:26:50.220896 8468 solver.cpp:237] Train net output #0: loss = 2.68653 (* 1 = 2.68653 loss)
I0428 17:26:50.220916 8468 sgd_solver.cpp:105] Iteration 2460, lr = 0.00614288
I0428 17:27:00.145754 8468 solver.cpp:218] Iteration 2472 (1.20963 iter/s, 9.9204s/12 iters), loss = 2.91339
I0428 17:27:00.153380 8468 solver.cpp:237] Train net output #0: loss = 2.91339 (* 1 = 2.91339 loss)
I0428 17:27:00.153407 8468 sgd_solver.cpp:105] Iteration 2472, lr = 0.0061283
I0428 17:27:10.186146 8468 solver.cpp:218] Iteration 2484 (1.19613 iter/s, 10.0324s/12 iters), loss = 2.71023
I0428 17:27:10.186205 8468 solver.cpp:237] Train net output #0: loss = 2.71023 (* 1 = 2.71023 loss)
I0428 17:27:10.186218 8468 sgd_solver.cpp:105] Iteration 2484, lr = 0.00611375
I0428 17:27:17.342424 8468 solver.cpp:218] Iteration 2496 (1.67694 iter/s, 7.15591s/12 iters), loss = 2.90706
I0428 17:27:17.348462 8468 solver.cpp:237] Train net output #0: loss = 2.90706 (* 1 = 2.90706 loss)
I0428 17:27:17.348529 8468 sgd_solver.cpp:105] Iteration 2496, lr = 0.00609923
I0428 17:27:24.278096 8468 solver.cpp:218] Iteration 2508 (1.73176 iter/s, 6.92937s/12 iters), loss = 2.83404
I0428 17:27:24.278198 8468 solver.cpp:237] Train net output #0: loss = 2.83404 (* 1 = 2.83404 loss)
I0428 17:27:24.278210 8468 sgd_solver.cpp:105] Iteration 2508, lr = 0.00608475
I0428 17:27:30.417320 8468 solver.cpp:218] Iteration 2520 (1.95476 iter/s, 6.13887s/12 iters), loss = 2.7811
I0428 17:27:30.417376 8468 solver.cpp:237] Train net output #0: loss = 2.7811 (* 1 = 2.7811 loss)
I0428 17:27:30.417387 8468 sgd_solver.cpp:105] Iteration 2520, lr = 0.0060703
I0428 17:27:34.332417 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:27:36.810390 8468 solver.cpp:218] Iteration 2532 (1.87713 iter/s, 6.39275s/12 iters), loss = 2.72326
I0428 17:27:36.810439 8468 solver.cpp:237] Train net output #0: loss = 2.72326 (* 1 = 2.72326 loss)
I0428 17:27:36.810451 8468 sgd_solver.cpp:105] Iteration 2532, lr = 0.00605589
I0428 17:27:43.638952 8468 solver.cpp:218] Iteration 2544 (1.75741 iter/s, 6.82822s/12 iters), loss = 2.58473
I0428 17:27:43.639011 8468 solver.cpp:237] Train net output #0: loss = 2.58473 (* 1 = 2.58473 loss)
I0428 17:27:43.639024 8468 sgd_solver.cpp:105] Iteration 2544, lr = 0.00604151
I0428 17:27:46.333825 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel
I0428 17:27:47.037818 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate
I0428 17:27:47.591413 8468 solver.cpp:330] Iteration 2550, Testing net (#0)
I0428 17:27:47.591437 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:27:52.429067 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:27:54.022825 8468 solver.cpp:397] Test net output #0: accuracy = 0.20527
I0428 17:27:54.022864 8468 solver.cpp:397] Test net output #1: loss = 3.23785 (* 1 = 3.23785 loss)
I0428 17:27:56.434743 8468 solver.cpp:218] Iteration 2556 (0.93785 iter/s, 12.7952s/12 iters), loss = 2.61431
I0428 17:27:56.437618 8468 solver.cpp:237] Train net output #0: loss = 2.61431 (* 1 = 2.61431 loss)
I0428 17:27:56.437636 8468 sgd_solver.cpp:105] Iteration 2556, lr = 0.00602717
I0428 17:28:03.152562 8468 solver.cpp:218] Iteration 2568 (1.78752 iter/s, 6.7132s/12 iters), loss = 2.69825
I0428 17:28:03.152614 8468 solver.cpp:237] Train net output #0: loss = 2.69825 (* 1 = 2.69825 loss)
I0428 17:28:03.152628 8468 sgd_solver.cpp:105] Iteration 2568, lr = 0.00601286
I0428 17:28:10.056713 8468 solver.cpp:218] Iteration 2580 (1.73817 iter/s, 6.90381s/12 iters), loss = 2.7156
I0428 17:28:10.056767 8468 solver.cpp:237] Train net output #0: loss = 2.7156 (* 1 = 2.7156 loss)
I0428 17:28:10.056780 8468 sgd_solver.cpp:105] Iteration 2580, lr = 0.00599858
I0428 17:28:16.627660 8468 solver.cpp:218] Iteration 2592 (1.82631 iter/s, 6.57062s/12 iters), loss = 2.91684
I0428 17:28:16.627712 8468 solver.cpp:237] Train net output #0: loss = 2.91684 (* 1 = 2.91684 loss)
I0428 17:28:16.627722 8468 sgd_solver.cpp:105] Iteration 2592, lr = 0.00598434
I0428 17:28:23.010004 8468 solver.cpp:218] Iteration 2604 (1.88028 iter/s, 6.38203s/12 iters), loss = 2.64107
I0428 17:28:23.010048 8468 solver.cpp:237] Train net output #0: loss = 2.64107 (* 1 = 2.64107 loss)
I0428 17:28:23.010058 8468 sgd_solver.cpp:105] Iteration 2604, lr = 0.00597013
I0428 17:28:28.383689 8468 solver.cpp:218] Iteration 2616 (2.23322 iter/s, 5.37341s/12 iters), loss = 2.69201
I0428 17:28:28.383903 8468 solver.cpp:237] Train net output #0: loss = 2.69201 (* 1 = 2.69201 loss)
I0428 17:28:28.383913 8468 sgd_solver.cpp:105] Iteration 2616, lr = 0.00595596
I0428 17:28:33.761811 8468 solver.cpp:218] Iteration 2628 (2.23144 iter/s, 5.37768s/12 iters), loss = 2.61098
I0428 17:28:33.761852 8468 solver.cpp:237] Train net output #0: loss = 2.61098 (* 1 = 2.61098 loss)
I0428 17:28:33.761860 8468 sgd_solver.cpp:105] Iteration 2628, lr = 0.00594182
I0428 17:28:34.240191 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:28:39.109138 8468 solver.cpp:218] Iteration 2640 (2.24423 iter/s, 5.34706s/12 iters), loss = 2.47148
I0428 17:28:39.109184 8468 solver.cpp:237] Train net output #0: loss = 2.47148 (* 1 = 2.47148 loss)
I0428 17:28:39.109194 8468 sgd_solver.cpp:105] Iteration 2640, lr = 0.00592771
I0428 17:28:43.946854 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel
I0428 17:28:44.542898 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate
I0428 17:28:44.978935 8468 solver.cpp:330] Iteration 2652, Testing net (#0)
I0428 17:28:44.978952 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:28:48.490907 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:28:49.590055 8468 solver.cpp:397] Test net output #0: accuracy = 0.235907
I0428 17:28:49.590083 8468 solver.cpp:397] Test net output #1: loss = 3.02536 (* 1 = 3.02536 loss)
I0428 17:28:49.720165 8468 solver.cpp:218] Iteration 2652 (1.13095 iter/s, 10.6105s/12 iters), loss = 2.61757
I0428 17:28:49.720222 8468 solver.cpp:237] Train net output #0: loss = 2.61757 (* 1 = 2.61757 loss)
I0428 17:28:49.720240 8468 sgd_solver.cpp:105] Iteration 2652, lr = 0.00591364
I0428 17:28:54.211241 8468 solver.cpp:218] Iteration 2664 (2.67211 iter/s, 4.49083s/12 iters), loss = 2.54936
I0428 17:28:54.211282 8468 solver.cpp:237] Train net output #0: loss = 2.54936 (* 1 = 2.54936 loss)
I0428 17:28:54.211292 8468 sgd_solver.cpp:105] Iteration 2664, lr = 0.0058996
I0428 17:28:59.713800 8468 solver.cpp:218] Iteration 2676 (2.18091 iter/s, 5.50229s/12 iters), loss = 2.64168
I0428 17:28:59.713932 8468 solver.cpp:237] Train net output #0: loss = 2.64168 (* 1 = 2.64168 loss)
I0428 17:28:59.713943 8468 sgd_solver.cpp:105] Iteration 2676, lr = 0.00588559
I0428 17:29:05.071377 8468 solver.cpp:218] Iteration 2688 (2.23997 iter/s, 5.35721s/12 iters), loss = 2.73432
I0428 17:29:05.071434 8468 solver.cpp:237] Train net output #0: loss = 2.73432 (* 1 = 2.73432 loss)
I0428 17:29:05.071446 8468 sgd_solver.cpp:105] Iteration 2688, lr = 0.00587162
I0428 17:29:10.480386 8468 solver.cpp:218] Iteration 2700 (2.21864 iter/s, 5.40873s/12 iters), loss = 2.32579
I0428 17:29:10.480438 8468 solver.cpp:237] Train net output #0: loss = 2.32579 (* 1 = 2.32579 loss)
I0428 17:29:10.480449 8468 sgd_solver.cpp:105] Iteration 2700, lr = 0.00585768
I0428 17:29:15.919517 8468 solver.cpp:218] Iteration 2712 (2.20635 iter/s, 5.43885s/12 iters), loss = 2.66187
I0428 17:29:15.919557 8468 solver.cpp:237] Train net output #0: loss = 2.66187 (* 1 = 2.66187 loss)
I0428 17:29:15.919566 8468 sgd_solver.cpp:105] Iteration 2712, lr = 0.00584377
I0428 17:29:21.354594 8468 solver.cpp:218] Iteration 2724 (2.20799 iter/s, 5.43481s/12 iters), loss = 2.68519
I0428 17:29:21.354643 8468 solver.cpp:237] Train net output #0: loss = 2.68519 (* 1 = 2.68519 loss)
I0428 17:29:21.354656 8468 sgd_solver.cpp:105] Iteration 2724, lr = 0.0058299
I0428 17:29:24.229476 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:29:26.982707 8468 solver.cpp:218] Iteration 2736 (2.13226 iter/s, 5.62783s/12 iters), loss = 2.68977
I0428 17:29:26.982748 8468 solver.cpp:237] Train net output #0: loss = 2.68977 (* 1 = 2.68977 loss)
I0428 17:29:26.982756 8468 sgd_solver.cpp:105] Iteration 2736, lr = 0.00581605
I0428 17:29:32.455777 8468 solver.cpp:218] Iteration 2748 (2.19266 iter/s, 5.4728s/12 iters), loss = 2.75542
I0428 17:29:32.455871 8468 solver.cpp:237] Train net output #0: loss = 2.75542 (* 1 = 2.75542 loss)
I0428 17:29:32.455880 8468 sgd_solver.cpp:105] Iteration 2748, lr = 0.00580225
I0428 17:29:34.649425 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel
I0428 17:29:35.737736 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate
I0428 17:29:37.232888 8468 solver.cpp:330] Iteration 2754, Testing net (#0)
I0428 17:29:37.232906 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:29:40.197444 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:29:40.721248 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:29:41.867516 8468 solver.cpp:397] Test net output #0: accuracy = 0.253064
I0428 17:29:41.867565 8468 solver.cpp:397] Test net output #1: loss = 3.01773 (* 1 = 3.01773 loss)
I0428 17:29:43.957546 8468 solver.cpp:218] Iteration 2760 (1.04337 iter/s, 11.5012s/12 iters), loss = 2.28683
I0428 17:29:43.957583 8468 solver.cpp:237] Train net output #0: loss = 2.28683 (* 1 = 2.28683 loss)
I0428 17:29:43.957594 8468 sgd_solver.cpp:105] Iteration 2760, lr = 0.00578847
I0428 17:29:49.358738 8468 solver.cpp:218] Iteration 2772 (2.22184 iter/s, 5.40092s/12 iters), loss = 2.43644
I0428 17:29:49.358783 8468 solver.cpp:237] Train net output #0: loss = 2.43644 (* 1 = 2.43644 loss)
I0428 17:29:49.358791 8468 sgd_solver.cpp:105] Iteration 2772, lr = 0.00577473
I0428 17:29:54.810688 8468 solver.cpp:218] Iteration 2784 (2.20116 iter/s, 5.45168s/12 iters), loss = 2.77656
I0428 17:29:54.810724 8468 solver.cpp:237] Train net output #0: loss = 2.77656 (* 1 = 2.77656 loss)
I0428 17:29:54.810732 8468 sgd_solver.cpp:105] Iteration 2784, lr = 0.00576102
I0428 17:30:00.214377 8468 solver.cpp:218] Iteration 2796 (2.22082 iter/s, 5.40342s/12 iters), loss = 2.31733
I0428 17:30:00.214424 8468 solver.cpp:237] Train net output #0: loss = 2.31733 (* 1 = 2.31733 loss)
I0428 17:30:00.214434 8468 sgd_solver.cpp:105] Iteration 2796, lr = 0.00574734
I0428 17:30:05.667865 8468 solver.cpp:218] Iteration 2808 (2.20054 iter/s, 5.45321s/12 iters), loss = 2.39262
I0428 17:30:05.668041 8468 solver.cpp:237] Train net output #0: loss = 2.39262 (* 1 = 2.39262 loss)
I0428 17:30:05.668056 8468 sgd_solver.cpp:105] Iteration 2808, lr = 0.00573369
I0428 17:30:11.076508 8468 solver.cpp:218] Iteration 2820 (2.21884 iter/s, 5.40824s/12 iters), loss = 2.153
I0428 17:30:11.076545 8468 solver.cpp:237] Train net output #0: loss = 2.153 (* 1 = 2.153 loss)
I0428 17:30:11.076555 8468 sgd_solver.cpp:105] Iteration 2820, lr = 0.00572008
I0428 17:30:16.225950 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:30:16.554339 8468 solver.cpp:218] Iteration 2832 (2.19075 iter/s, 5.47756s/12 iters), loss = 2.3914
I0428 17:30:16.554375 8468 solver.cpp:237] Train net output #0: loss = 2.3914 (* 1 = 2.3914 loss)
I0428 17:30:16.554384 8468 sgd_solver.cpp:105] Iteration 2832, lr = 0.0057065
I0428 17:30:21.946550 8468 solver.cpp:218] Iteration 2844 (2.22554 iter/s, 5.39195s/12 iters), loss = 2.44721
I0428 17:30:21.946590 8468 solver.cpp:237] Train net output #0: loss = 2.44721 (* 1 = 2.44721 loss)
I0428 17:30:21.946601 8468 sgd_solver.cpp:105] Iteration 2844, lr = 0.00569295
I0428 17:30:26.892856 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel
I0428 17:30:27.854924 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate
I0428 17:30:29.249331 8468 solver.cpp:330] Iteration 2856, Testing net (#0)
I0428 17:30:29.249362 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:30:32.746642 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:30:33.927736 8468 solver.cpp:397] Test net output #0: accuracy = 0.270833
I0428 17:30:33.927770 8468 solver.cpp:397] Test net output #1: loss = 3.00052 (* 1 = 3.00052 loss)
I0428 17:30:34.056562 8468 solver.cpp:218] Iteration 2856 (0.990959 iter/s, 12.1095s/12 iters), loss = 2.41214
I0428 17:30:34.056618 8468 solver.cpp:237] Train net output #0: loss = 2.41214 (* 1 = 2.41214 loss)
I0428 17:30:34.056635 8468 sgd_solver.cpp:105] Iteration 2856, lr = 0.00567944
I0428 17:30:38.563678 8468 solver.cpp:218] Iteration 2868 (2.6626 iter/s, 4.50688s/12 iters), loss = 2.33902
I0428 17:30:38.563793 8468 solver.cpp:237] Train net output #0: loss = 2.33902 (* 1 = 2.33902 loss)
I0428 17:30:38.563805 8468 sgd_solver.cpp:105] Iteration 2868, lr = 0.00566595
I0428 17:30:43.932629 8468 solver.cpp:218] Iteration 2880 (2.23521 iter/s, 5.36861s/12 iters), loss = 2.64347
I0428 17:30:43.932672 8468 solver.cpp:237] Train net output #0: loss = 2.64347 (* 1 = 2.64347 loss)
I0428 17:30:43.932682 8468 sgd_solver.cpp:105] Iteration 2880, lr = 0.0056525
I0428 17:30:49.326314 8468 solver.cpp:218] Iteration 2892 (2.22493 iter/s, 5.39342s/12 iters), loss = 2.51994
I0428 17:30:49.326354 8468 solver.cpp:237] Train net output #0: loss = 2.51994 (* 1 = 2.51994 loss)
I0428 17:30:49.326364 8468 sgd_solver.cpp:105] Iteration 2892, lr = 0.00563908
I0428 17:30:54.808970 8468 solver.cpp:218] Iteration 2904 (2.18883 iter/s, 5.48239s/12 iters), loss = 2.11426
I0428 17:30:54.809020 8468 solver.cpp:237] Train net output #0: loss = 2.11426 (* 1 = 2.11426 loss)
I0428 17:30:54.809028 8468 sgd_solver.cpp:105] Iteration 2904, lr = 0.00562569
I0428 17:31:00.345371 8468 solver.cpp:218] Iteration 2916 (2.16758 iter/s, 5.53612s/12 iters), loss = 2.52598
I0428 17:31:00.345413 8468 solver.cpp:237] Train net output #0: loss = 2.52598 (* 1 = 2.52598 loss)
I0428 17:31:00.345423 8468 sgd_solver.cpp:105] Iteration 2916, lr = 0.00561233
I0428 17:31:05.957438 8468 solver.cpp:218] Iteration 2928 (2.13836 iter/s, 5.61179s/12 iters), loss = 2.24003
I0428 17:31:05.957484 8468 solver.cpp:237] Train net output #0: loss = 2.24003 (* 1 = 2.24003 loss)
I0428 17:31:05.957495 8468 sgd_solver.cpp:105] Iteration 2928, lr = 0.00559901
I0428 17:31:08.204672 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:31:11.713191 8468 solver.cpp:218] Iteration 2940 (2.08498 iter/s, 5.75546s/12 iters), loss = 1.93968
I0428 17:31:11.713368 8468 solver.cpp:237] Train net output #0: loss = 1.93968 (* 1 = 1.93968 loss)
I0428 17:31:11.713380 8468 sgd_solver.cpp:105] Iteration 2940, lr = 0.00558572
I0428 17:31:17.200999 8468 solver.cpp:218] Iteration 2952 (2.18683 iter/s, 5.4874s/12 iters), loss = 1.96517
I0428 17:31:17.201050 8468 solver.cpp:237] Train net output #0: loss = 1.96517 (* 1 = 1.96517 loss)
I0428 17:31:17.201061 8468 sgd_solver.cpp:105] Iteration 2952, lr = 0.00557245
I0428 17:31:19.383787 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel
I0428 17:31:19.990890 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate
I0428 17:31:20.419834 8468 solver.cpp:330] Iteration 2958, Testing net (#0)
I0428 17:31:20.419852 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:31:23.953208 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:31:25.309284 8468 solver.cpp:397] Test net output #0: accuracy = 0.276961
I0428 17:31:25.309322 8468 solver.cpp:397] Test net output #1: loss = 2.94561 (* 1 = 2.94561 loss)
I0428 17:31:27.503227 8468 solver.cpp:218] Iteration 2964 (1.16485 iter/s, 10.3018s/12 iters), loss = 2.19411
I0428 17:31:27.503273 8468 solver.cpp:237] Train net output #0: loss = 2.19411 (* 1 = 2.19411 loss)
I0428 17:31:27.503281 8468 sgd_solver.cpp:105] Iteration 2964, lr = 0.00555922
I0428 17:31:33.138201 8468 solver.cpp:218] Iteration 2976 (2.12967 iter/s, 5.63469s/12 iters), loss = 2.02982
I0428 17:31:33.138247 8468 solver.cpp:237] Train net output #0: loss = 2.02982 (* 1 = 2.02982 loss)
I0428 17:31:33.138257 8468 sgd_solver.cpp:105] Iteration 2976, lr = 0.00554603
I0428 17:31:38.681000 8468 solver.cpp:218] Iteration 2988 (2.16508 iter/s, 5.54252s/12 iters), loss = 2.13046
I0428 17:31:38.681057 8468 solver.cpp:237] Train net output #0: loss = 2.13046 (* 1 = 2.13046 loss)
I0428 17:31:38.681069 8468 sgd_solver.cpp:105] Iteration 2988, lr = 0.00553286
I0428 17:31:44.308290 8468 solver.cpp:218] Iteration 3000 (2.13258 iter/s, 5.62699s/12 iters), loss = 2.41968
I0428 17:31:44.308416 8468 solver.cpp:237] Train net output #0: loss = 2.41968 (* 1 = 2.41968 loss)
I0428 17:31:44.308429 8468 sgd_solver.cpp:105] Iteration 3000, lr = 0.00551972
I0428 17:31:50.518499 8468 solver.cpp:218] Iteration 3012 (1.93242 iter/s, 6.20983s/12 iters), loss = 2.45325
I0428 17:31:50.518549 8468 solver.cpp:237] Train net output #0: loss = 2.45325 (* 1 = 2.45325 loss)
I0428 17:31:50.518558 8468 sgd_solver.cpp:105] Iteration 3012, lr = 0.00550662
I0428 17:31:56.245975 8468 solver.cpp:218] Iteration 3024 (2.09527 iter/s, 5.72718s/12 iters), loss = 2.28745
I0428 17:31:56.246027 8468 solver.cpp:237] Train net output #0: loss = 2.28745 (* 1 = 2.28745 loss)
I0428 17:31:56.246039 8468 sgd_solver.cpp:105] Iteration 3024, lr = 0.00549354
I0428 17:32:00.606885 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:32:01.794616 8468 solver.cpp:218] Iteration 3036 (2.1628 iter/s, 5.54836s/12 iters), loss = 2.04048
I0428 17:32:01.794659 8468 solver.cpp:237] Train net output #0: loss = 2.04048 (* 1 = 2.04048 loss)
I0428 17:32:01.794669 8468 sgd_solver.cpp:105] Iteration 3036, lr = 0.0054805
I0428 17:32:07.432718 8468 solver.cpp:218] Iteration 3048 (2.12848 iter/s, 5.63782s/12 iters), loss = 2.33274
I0428 17:32:07.432766 8468 solver.cpp:237] Train net output #0: loss = 2.33274 (* 1 = 2.33274 loss)
I0428 17:32:07.432777 8468 sgd_solver.cpp:105] Iteration 3048, lr = 0.00546749
I0428 17:32:12.334995 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel
I0428 17:32:14.055398 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate
I0428 17:32:14.837311 8468 solver.cpp:330] Iteration 3060, Testing net (#0)
I0428 17:32:14.837393 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:32:18.391427 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:32:19.729436 8468 solver.cpp:397] Test net output #0: accuracy = 0.262868
I0428 17:32:19.729483 8468 solver.cpp:397] Test net output #1: loss = 2.91784 (* 1 = 2.91784 loss)
I0428 17:32:19.852921 8468 solver.cpp:218] Iteration 3060 (0.96621 iter/s, 12.4197s/12 iters), loss = 2.11616
I0428 17:32:19.852968 8468 solver.cpp:237] Train net output #0: loss = 2.11616 (* 1 = 2.11616 loss)
I0428 17:32:19.852977 8468 sgd_solver.cpp:105] Iteration 3060, lr = 0.00545451
I0428 17:32:24.510123 8468 solver.cpp:218] Iteration 3072 (2.57679 iter/s, 4.65695s/12 iters), loss = 2.38044
I0428 17:32:24.510179 8468 solver.cpp:237] Train net output #0: loss = 2.38044 (* 1 = 2.38044 loss)
I0428 17:32:24.510190 8468 sgd_solver.cpp:105] Iteration 3072, lr = 0.00544156
I0428 17:32:30.233350 8468 solver.cpp:218] Iteration 3084 (2.09683 iter/s, 5.72293s/12 iters), loss = 2.17204
I0428 17:32:30.233395 8468 solver.cpp:237] Train net output #0: loss = 2.17204 (* 1 = 2.17204 loss)
I0428 17:32:30.233405 8468 sgd_solver.cpp:105] Iteration 3084, lr = 0.00542864
I0428 17:32:35.769065 8468 solver.cpp:218] Iteration 3096 (2.16785 iter/s, 5.53544s/12 iters), loss = 2.11892
I0428 17:32:35.769111 8468 solver.cpp:237] Train net output #0: loss = 2.11892 (* 1 = 2.11892 loss)
I0428 17:32:35.769120 8468 sgd_solver.cpp:105] Iteration 3096, lr = 0.00541575
I0428 17:32:41.319368 8468 solver.cpp:218] Iteration 3108 (2.16215 iter/s, 5.55003s/12 iters), loss = 1.95684
I0428 17:32:41.319409 8468 solver.cpp:237] Train net output #0: loss = 1.95684 (* 1 = 1.95684 loss)
I0428 17:32:41.319420 8468 sgd_solver.cpp:105] Iteration 3108, lr = 0.00540289
I0428 17:32:46.970244 8468 solver.cpp:218] Iteration 3120 (2.12367 iter/s, 5.6506s/12 iters), loss = 2.33969
I0428 17:32:46.970372 8468 solver.cpp:237] Train net output #0: loss = 2.33969 (* 1 = 2.33969 loss)
I0428 17:32:46.970383 8468 sgd_solver.cpp:105] Iteration 3120, lr = 0.00539006
I0428 17:32:52.569721 8468 solver.cpp:218] Iteration 3132 (2.1432 iter/s, 5.59911s/12 iters), loss = 2.18817
I0428 17:32:52.569766 8468 solver.cpp:237] Train net output #0: loss = 2.18817 (* 1 = 2.18817 loss)
I0428 17:32:52.569773 8468 sgd_solver.cpp:105] Iteration 3132, lr = 0.00537727
I0428 17:32:53.772365 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:32:58.123661 8468 solver.cpp:218] Iteration 3144 (2.16074 iter/s, 5.55366s/12 iters), loss = 2.0634
I0428 17:32:58.123713 8468 solver.cpp:237] Train net output #0: loss = 2.0634 (* 1 = 2.0634 loss)
I0428 17:32:58.123724 8468 sgd_solver.cpp:105] Iteration 3144, lr = 0.0053645
I0428 17:33:03.628545 8468 solver.cpp:218] Iteration 3156 (2.18 iter/s, 5.50459s/12 iters), loss = 2.07187
I0428 17:33:03.628602 8468 solver.cpp:237] Train net output #0: loss = 2.07187 (* 1 = 2.07187 loss)
I0428 17:33:03.628618 8468 sgd_solver.cpp:105] Iteration 3156, lr = 0.00535176
I0428 17:33:05.899125 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel
I0428 17:33:06.927294 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate
I0428 17:33:07.887991 8468 solver.cpp:330] Iteration 3162, Testing net (#0)
I0428 17:33:07.888017 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:33:11.400365 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:33:12.924158 8468 solver.cpp:397] Test net output #0: accuracy = 0.294118
I0428 17:33:12.924187 8468 solver.cpp:397] Test net output #1: loss = 2.89958 (* 1 = 2.89958 loss)
I0428 17:33:15.171692 8468 solver.cpp:218] Iteration 3168 (1.03963 iter/s, 11.5426s/12 iters), loss = 2.18548
I0428 17:33:15.171753 8468 solver.cpp:237] Train net output #0: loss = 2.18548 (* 1 = 2.18548 loss)
I0428 17:33:15.171766 8468 sgd_solver.cpp:105] Iteration 3168, lr = 0.00533906
I0428 17:33:20.673813 8468 solver.cpp:218] Iteration 3180 (2.18109 iter/s, 5.50182s/12 iters), loss = 2.08307
I0428 17:33:20.673969 8468 solver.cpp:237] Train net output #0: loss = 2.08307 (* 1 = 2.08307 loss)
I0428 17:33:20.673982 8468 sgd_solver.cpp:105] Iteration 3180, lr = 0.00532638
I0428 17:33:26.252780 8468 solver.cpp:218] Iteration 3192 (2.15108 iter/s, 5.57858s/12 iters), loss = 2.16515
I0428 17:33:26.252825 8468 solver.cpp:237] Train net output #0: loss = 2.16515 (* 1 = 2.16515 loss)
I0428 17:33:26.252832 8468 sgd_solver.cpp:105] Iteration 3192, lr = 0.00531374
I0428 17:33:31.699918 8468 solver.cpp:218] Iteration 3204 (2.2031 iter/s, 5.44686s/12 iters), loss = 1.97876
I0428 17:33:31.699973 8468 solver.cpp:237] Train net output #0: loss = 1.97876 (* 1 = 1.97876 loss)
I0428 17:33:31.699985 8468 sgd_solver.cpp:105] Iteration 3204, lr = 0.00530112
I0428 17:33:37.030750 8468 solver.cpp:218] Iteration 3216 (2.25117 iter/s, 5.33055s/12 iters), loss = 1.95539
I0428 17:33:37.030802 8468 solver.cpp:237] Train net output #0: loss = 1.95539 (* 1 = 1.95539 loss)
I0428 17:33:37.030815 8468 sgd_solver.cpp:105] Iteration 3216, lr = 0.00528853
I0428 17:33:42.405979 8468 solver.cpp:218] Iteration 3228 (2.23258 iter/s, 5.37495s/12 iters), loss = 1.96201
I0428 17:33:42.406033 8468 solver.cpp:237] Train net output #0: loss = 1.96201 (* 1 = 1.96201 loss)
I0428 17:33:42.406044 8468 sgd_solver.cpp:105] Iteration 3228, lr = 0.00527598
I0428 17:33:45.920053 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:33:47.761703 8468 solver.cpp:218] Iteration 3240 (2.24071 iter/s, 5.35544s/12 iters), loss = 2.15625
I0428 17:33:47.761747 8468 solver.cpp:237] Train net output #0: loss = 2.15625 (* 1 = 2.15625 loss)
I0428 17:33:47.761755 8468 sgd_solver.cpp:105] Iteration 3240, lr = 0.00526345
I0428 17:33:53.386463 8468 solver.cpp:218] Iteration 3252 (2.13353 iter/s, 5.62447s/12 iters), loss = 1.79171
I0428 17:33:53.386602 8468 solver.cpp:237] Train net output #0: loss = 1.79171 (* 1 = 1.79171 loss)
I0428 17:33:53.386617 8468 sgd_solver.cpp:105] Iteration 3252, lr = 0.00525095
I0428 17:33:58.542819 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel
I0428 17:33:59.129010 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate
I0428 17:33:59.656906 8468 solver.cpp:330] Iteration 3264, Testing net (#0)
I0428 17:33:59.656927 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:34:03.503140 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:34:04.880131 8468 solver.cpp:397] Test net output #0: accuracy = 0.306373
I0428 17:34:04.880174 8468 solver.cpp:397] Test net output #1: loss = 2.89938 (* 1 = 2.89938 loss)
I0428 17:34:05.009680 8468 solver.cpp:218] Iteration 3264 (1.03247 iter/s, 11.6226s/12 iters), loss = 2.03465
I0428 17:34:05.009734 8468 solver.cpp:237] Train net output #0: loss = 2.03465 (* 1 = 2.03465 loss)
I0428 17:34:05.009748 8468 sgd_solver.cpp:105] Iteration 3264, lr = 0.00523849
I0428 17:34:09.722921 8468 solver.cpp:218] Iteration 3276 (2.54616 iter/s, 4.71298s/12 iters), loss = 1.87754
I0428 17:34:09.722971 8468 solver.cpp:237] Train net output #0: loss = 1.87754 (* 1 = 1.87754 loss)
I0428 17:34:09.722982 8468 sgd_solver.cpp:105] Iteration 3276, lr = 0.00522605
I0428 17:34:15.516767 8468 solver.cpp:218] Iteration 3288 (2.07127 iter/s, 5.79355s/12 iters), loss = 1.75211
I0428 17:34:15.516806 8468 solver.cpp:237] Train net output #0: loss = 1.75211 (* 1 = 1.75211 loss)
I0428 17:34:15.516815 8468 sgd_solver.cpp:105] Iteration 3288, lr = 0.00521364
I0428 17:34:21.262063 8468 solver.cpp:218] Iteration 3300 (2.08877 iter/s, 5.74501s/12 iters), loss = 2.06456
I0428 17:34:21.262113 8468 solver.cpp:237] Train net output #0: loss = 2.06456 (* 1 = 2.06456 loss)
I0428 17:34:21.262126 8468 sgd_solver.cpp:105] Iteration 3300, lr = 0.00520126
I0428 17:34:26.882848 8468 solver.cpp:218] Iteration 3312 (2.13504 iter/s, 5.6205s/12 iters), loss = 1.9154
I0428 17:34:26.883006 8468 solver.cpp:237] Train net output #0: loss = 1.9154 (* 1 = 1.9154 loss)
I0428 17:34:26.883016 8468 sgd_solver.cpp:105] Iteration 3312, lr = 0.00518892
I0428 17:34:32.436583 8468 solver.cpp:218] Iteration 3324 (2.16086 iter/s, 5.55334s/12 iters), loss = 2.14143
I0428 17:34:32.436621 8468 solver.cpp:237] Train net output #0: loss = 2.14143 (* 1 = 2.14143 loss)
I0428 17:34:32.436630 8468 sgd_solver.cpp:105] Iteration 3324, lr = 0.0051766
I0428 17:34:38.080372 8468 solver.cpp:218] Iteration 3336 (2.12634 iter/s, 5.64351s/12 iters), loss = 1.98913
I0428 17:34:38.080421 8468 solver.cpp:237] Train net output #0: loss = 1.98913 (* 1 = 1.98913 loss)
I0428 17:34:38.080431 8468 sgd_solver.cpp:105] Iteration 3336, lr = 0.00516431
I0428 17:34:38.583112 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:34:43.749799 8468 solver.cpp:218] Iteration 3348 (2.11673 iter/s, 5.66913s/12 iters), loss = 1.78493
I0428 17:34:43.749843 8468 solver.cpp:237] Train net output #0: loss = 1.78493 (* 1 = 1.78493 loss)
I0428 17:34:43.749853 8468 sgd_solver.cpp:105] Iteration 3348, lr = 0.00515204
I0428 17:34:49.553491 8468 solver.cpp:218] Iteration 3360 (2.06775 iter/s, 5.8034s/12 iters), loss = 1.76932
I0428 17:34:49.553534 8468 solver.cpp:237] Train net output #0: loss = 1.76932 (* 1 = 1.76932 loss)
I0428 17:34:49.553542 8468 sgd_solver.cpp:105] Iteration 3360, lr = 0.00513981
I0428 17:34:51.883648 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel
I0428 17:34:53.293792 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate
I0428 17:34:54.299662 8468 solver.cpp:330] Iteration 3366, Testing net (#0)
I0428 17:34:54.299692 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:34:57.991981 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:34:59.580803 8468 solver.cpp:397] Test net output #0: accuracy = 0.294118
I0428 17:34:59.580847 8468 solver.cpp:397] Test net output #1: loss = 2.94822 (* 1 = 2.94822 loss)
I0428 17:35:01.624847 8468 solver.cpp:218] Iteration 3372 (0.994133 iter/s, 12.0708s/12 iters), loss = 1.80641
I0428 17:35:01.624889 8468 solver.cpp:237] Train net output #0: loss = 1.80641 (* 1 = 1.80641 loss)
I0428 17:35:01.624899 8468 sgd_solver.cpp:105] Iteration 3372, lr = 0.00512761
I0428 17:35:07.407696 8468 solver.cpp:218] Iteration 3384 (2.07521 iter/s, 5.78256s/12 iters), loss = 2.02962
I0428 17:35:07.407749 8468 solver.cpp:237] Train net output #0: loss = 2.02962 (* 1 = 2.02962 loss)
I0428 17:35:07.407763 8468 sgd_solver.cpp:105] Iteration 3384, lr = 0.00511544
I0428 17:35:13.218371 8468 solver.cpp:218] Iteration 3396 (2.06527 iter/s, 5.81038s/12 iters), loss = 1.76526
I0428 17:35:13.218413 8468 solver.cpp:237] Train net output #0: loss = 1.76526 (* 1 = 1.76526 loss)
I0428 17:35:13.218422 8468 sgd_solver.cpp:105] Iteration 3396, lr = 0.00510329
I0428 17:35:19.078003 8468 solver.cpp:218] Iteration 3408 (2.04801 iter/s, 5.85934s/12 iters), loss = 1.66164
I0428 17:35:19.078058 8468 solver.cpp:237] Train net output #0: loss = 1.66164 (* 1 = 1.66164 loss)
I0428 17:35:19.078070 8468 sgd_solver.cpp:105] Iteration 3408, lr = 0.00509117
I0428 17:35:24.814005 8468 solver.cpp:218] Iteration 3420 (2.09216 iter/s, 5.7357s/12 iters), loss = 1.67038
I0428 17:35:24.814052 8468 solver.cpp:237] Train net output #0: loss = 1.67038 (* 1 = 1.67038 loss)
I0428 17:35:24.814060 8468 sgd_solver.cpp:105] Iteration 3420, lr = 0.00507909
I0428 17:35:30.469831 8468 solver.cpp:218] Iteration 3432 (2.12182 iter/s, 5.65554s/12 iters), loss = 1.9025
I0428 17:35:30.470835 8468 solver.cpp:237] Train net output #0: loss = 1.9025 (* 1 = 1.9025 loss)
I0428 17:35:30.470866 8468 sgd_solver.cpp:105] Iteration 3432, lr = 0.00506703
I0428 17:35:33.427343 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:35:36.218475 8468 solver.cpp:218] Iteration 3444 (2.0879 iter/s, 5.7474s/12 iters), loss = 1.86351
I0428 17:35:36.218519 8468 solver.cpp:237] Train net output #0: loss = 1.86351 (* 1 = 1.86351 loss)
I0428 17:35:36.218528 8468 sgd_solver.cpp:105] Iteration 3444, lr = 0.005055
I0428 17:35:41.982260 8468 solver.cpp:218] Iteration 3456 (2.08207 iter/s, 5.76349s/12 iters), loss = 2.04378
I0428 17:35:41.982308 8468 solver.cpp:237] Train net output #0: loss = 2.04378 (* 1 = 2.04378 loss)
I0428 17:35:41.982319 8468 sgd_solver.cpp:105] Iteration 3456, lr = 0.005043
I0428 17:35:47.245661 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel
I0428 17:35:47.878902 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate
I0428 17:35:48.320688 8468 solver.cpp:330] Iteration 3468, Testing net (#0)
I0428 17:35:48.320709 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:35:48.438446 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:35:51.736654 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:35:53.394634 8468 solver.cpp:397] Test net output #0: accuracy = 0.295956
I0428 17:35:53.394665 8468 solver.cpp:397] Test net output #1: loss = 2.93937 (* 1 = 2.93937 loss)
I0428 17:35:53.519793 8468 solver.cpp:218] Iteration 3468 (1.04013 iter/s, 11.537s/12 iters), loss = 1.5291
I0428 17:35:53.519834 8468 solver.cpp:237] Train net output #0: loss = 1.5291 (* 1 = 1.5291 loss)
I0428 17:35:53.519842 8468 sgd_solver.cpp:105] Iteration 3468, lr = 0.00503102
I0428 17:35:58.277577 8468 solver.cpp:218] Iteration 3480 (2.52231 iter/s, 4.75753s/12 iters), loss = 1.68211
I0428 17:35:58.277634 8468 solver.cpp:237] Train net output #0: loss = 1.68211 (* 1 = 1.68211 loss)
I0428 17:35:58.277647 8468 sgd_solver.cpp:105] Iteration 3480, lr = 0.00501908
I0428 17:36:04.056543 8468 solver.cpp:218] Iteration 3492 (2.07661 iter/s, 5.77865s/12 iters), loss = 1.70495
I0428 17:36:04.057237 8468 solver.cpp:237] Train net output #0: loss = 1.70495 (* 1 = 1.70495 loss)
I0428 17:36:04.057248 8468 sgd_solver.cpp:105] Iteration 3492, lr = 0.00500716
I0428 17:36:09.941968 8468 solver.cpp:218] Iteration 3504 (2.03926 iter/s, 5.88448s/12 iters), loss = 1.57269
I0428 17:36:09.942029 8468 solver.cpp:237] Train net output #0: loss = 1.57269 (* 1 = 1.57269 loss)
I0428 17:36:09.942045 8468 sgd_solver.cpp:105] Iteration 3504, lr = 0.00499527
I0428 17:36:15.801949 8468 solver.cpp:218] Iteration 3516 (2.04789 iter/s, 5.85968s/12 iters), loss = 1.85599
I0428 17:36:15.801986 8468 solver.cpp:237] Train net output #0: loss = 1.85599 (* 1 = 1.85599 loss)
I0428 17:36:15.801995 8468 sgd_solver.cpp:105] Iteration 3516, lr = 0.00498341
I0428 17:36:21.413518 8468 solver.cpp:218] Iteration 3528 (2.13855 iter/s, 5.61129s/12 iters), loss = 1.74412
I0428 17:36:21.413566 8468 solver.cpp:237] Train net output #0: loss = 1.74412 (* 1 = 1.74412 loss)
I0428 17:36:21.413578 8468 sgd_solver.cpp:105] Iteration 3528, lr = 0.00497158
I0428 17:36:26.808645 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:36:27.119614 8468 solver.cpp:218] Iteration 3540 (2.10312 iter/s, 5.7058s/12 iters), loss = 1.67242
I0428 17:36:27.119663 8468 solver.cpp:237] Train net output #0: loss = 1.67242 (* 1 = 1.67242 loss)
I0428 17:36:27.119673 8468 sgd_solver.cpp:105] Iteration 3540, lr = 0.00495978
I0428 17:36:32.661026 8468 solver.cpp:218] Iteration 3552 (2.16562 iter/s, 5.54113s/12 iters), loss = 1.64977
I0428 17:36:32.661072 8468 solver.cpp:237] Train net output #0: loss = 1.64977 (* 1 = 1.64977 loss)
I0428 17:36:32.661079 8468 sgd_solver.cpp:105] Iteration 3552, lr = 0.004948
I0428 17:36:38.231357 8468 solver.cpp:218] Iteration 3564 (2.15438 iter/s, 5.57005s/12 iters), loss = 1.57766
I0428 17:36:38.232023 8468 solver.cpp:237] Train net output #0: loss = 1.57766 (* 1 = 1.57766 loss)
I0428 17:36:38.232033 8468 sgd_solver.cpp:105] Iteration 3564, lr = 0.00493626
I0428 17:36:40.432755 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel
I0428 17:36:44.095284 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate
I0428 17:36:44.743263 8468 solver.cpp:330] Iteration 3570, Testing net (#0)
I0428 17:36:44.743289 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:36:48.081667 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:36:49.769727 8468 solver.cpp:397] Test net output #0: accuracy = 0.325368
I0428 17:36:49.769762 8468 solver.cpp:397] Test net output #1: loss = 2.9777 (* 1 = 2.9777 loss)
I0428 17:36:51.813643 8468 solver.cpp:218] Iteration 3576 (0.883583 iter/s, 13.5811s/12 iters), loss = 1.50351
I0428 17:36:51.813694 8468 solver.cpp:237] Train net output #0: loss = 1.50351 (* 1 = 1.50351 loss)
I0428 17:36:51.813705 8468 sgd_solver.cpp:105] Iteration 3576, lr = 0.00492454
I0428 17:36:57.587621 8468 solver.cpp:218] Iteration 3588 (2.07839 iter/s, 5.77369s/12 iters), loss = 1.76215
I0428 17:36:57.587661 8468 solver.cpp:237] Train net output #0: loss = 1.76215 (* 1 = 1.76215 loss)
I0428 17:36:57.587669 8468 sgd_solver.cpp:105] Iteration 3588, lr = 0.00491284
I0428 17:37:03.093869 8468 solver.cpp:218] Iteration 3600 (2.17945 iter/s, 5.50597s/12 iters), loss = 1.82702
I0428 17:37:03.093926 8468 solver.cpp:237] Train net output #0: loss = 1.82702 (* 1 = 1.82702 loss)
I0428 17:37:03.093938 8468 sgd_solver.cpp:105] Iteration 3600, lr = 0.00490118
I0428 17:37:08.667374 8468 solver.cpp:218] Iteration 3612 (2.15316 iter/s, 5.57321s/12 iters), loss = 1.34343
I0428 17:37:08.667513 8468 solver.cpp:237] Train net output #0: loss = 1.34343 (* 1 = 1.34343 loss)
I0428 17:37:08.667522 8468 sgd_solver.cpp:105] Iteration 3612, lr = 0.00488954
I0428 17:37:14.237067 8468 solver.cpp:218] Iteration 3624 (2.15466 iter/s, 5.56932s/12 iters), loss = 1.79099
I0428 17:37:14.237107 8468 solver.cpp:237] Train net output #0: loss = 1.79099 (* 1 = 1.79099 loss)
I0428 17:37:14.237116 8468 sgd_solver.cpp:105] Iteration 3624, lr = 0.00487793
I0428 17:37:19.882380 8468 solver.cpp:218] Iteration 3636 (2.12576 iter/s, 5.64503s/12 iters), loss = 1.55094
I0428 17:37:19.882423 8468 solver.cpp:237] Train net output #0: loss = 1.55094 (* 1 = 1.55094 loss)
I0428 17:37:19.882436 8468 sgd_solver.cpp:105] Iteration 3636, lr = 0.00486635
I0428 17:37:21.921191 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:37:25.324911 8468 solver.cpp:218] Iteration 3648 (2.20497 iter/s, 5.44225s/12 iters), loss = 1.48127
I0428 17:37:25.324954 8468 solver.cpp:237] Train net output #0: loss = 1.48127 (* 1 = 1.48127 loss)
I0428 17:37:25.324963 8468 sgd_solver.cpp:105] Iteration 3648, lr = 0.0048548
I0428 17:37:30.767611 8468 solver.cpp:218] Iteration 3660 (2.2049 iter/s, 5.44242s/12 iters), loss = 1.60449
I0428 17:37:30.767652 8468 solver.cpp:237] Train net output #0: loss = 1.60449 (* 1 = 1.60449 loss)
I0428 17:37:30.767661 8468 sgd_solver.cpp:105] Iteration 3660, lr = 0.00484327
I0428 17:37:35.674810 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel
I0428 17:37:41.788524 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate
I0428 17:37:47.469812 8468 solver.cpp:330] Iteration 3672, Testing net (#0)
I0428 17:37:47.469849 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:37:50.664829 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:37:52.271486 8468 solver.cpp:397] Test net output #0: accuracy = 0.323529
I0428 17:37:52.271523 8468 solver.cpp:397] Test net output #1: loss = 2.98268 (* 1 = 2.98268 loss)
I0428 17:37:52.403750 8468 solver.cpp:218] Iteration 3672 (0.554651 iter/s, 21.6352s/12 iters), loss = 1.61623
I0428 17:37:52.403811 8468 solver.cpp:237] Train net output #0: loss = 1.61623 (* 1 = 1.61623 loss)
I0428 17:37:52.403820 8468 sgd_solver.cpp:105] Iteration 3672, lr = 0.00483177
I0428 17:37:56.913278 8468 solver.cpp:218] Iteration 3684 (2.66119 iter/s, 4.50927s/12 iters), loss = 1.53781
I0428 17:37:56.913316 8468 solver.cpp:237] Train net output #0: loss = 1.53781 (* 1 = 1.53781 loss)
I0428 17:37:56.913326 8468 sgd_solver.cpp:105] Iteration 3684, lr = 0.0048203
I0428 17:38:02.324209 8468 solver.cpp:218] Iteration 3696 (2.21784 iter/s, 5.41066s/12 iters), loss = 1.5746
I0428 17:38:02.324249 8468 solver.cpp:237] Train net output #0: loss = 1.5746 (* 1 = 1.5746 loss)
I0428 17:38:02.324261 8468 sgd_solver.cpp:105] Iteration 3696, lr = 0.00480886
I0428 17:38:07.712051 8468 solver.cpp:218] Iteration 3708 (2.22735 iter/s, 5.38757s/12 iters), loss = 1.71392
I0428 17:38:07.712090 8468 solver.cpp:237] Train net output #0: loss = 1.71392 (* 1 = 1.71392 loss)
I0428 17:38:07.712098 8468 sgd_solver.cpp:105] Iteration 3708, lr = 0.00479744
I0428 17:38:13.413609 8468 solver.cpp:218] Iteration 3720 (2.10479 iter/s, 5.70128s/12 iters), loss = 1.86677
I0428 17:38:13.413851 8468 solver.cpp:237] Train net output #0: loss = 1.86677 (* 1 = 1.86677 loss)
I0428 17:38:13.413862 8468 sgd_solver.cpp:105] Iteration 3720, lr = 0.00478605
I0428 17:38:18.983410 8468 solver.cpp:218] Iteration 3732 (2.15466 iter/s, 5.56932s/12 iters), loss = 1.77104
I0428 17:38:18.983453 8468 solver.cpp:237] Train net output #0: loss = 1.77104 (* 1 = 1.77104 loss)
I0428 17:38:18.983464 8468 sgd_solver.cpp:105] Iteration 3732, lr = 0.00477469
I0428 17:38:23.389160 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:38:24.485776 8468 solver.cpp:218] Iteration 3744 (2.18099 iter/s, 5.50209s/12 iters), loss = 1.64387
I0428 17:38:24.485812 8468 solver.cpp:237] Train net output #0: loss = 1.64387 (* 1 = 1.64387 loss)
I0428 17:38:24.485822 8468 sgd_solver.cpp:105] Iteration 3744, lr = 0.00476335
I0428 17:38:30.122089 8468 solver.cpp:218] Iteration 3756 (2.12916 iter/s, 5.63603s/12 iters), loss = 1.50058
I0428 17:38:30.122138 8468 solver.cpp:237] Train net output #0: loss = 1.50058 (* 1 = 1.50058 loss)
I0428 17:38:30.122150 8468 sgd_solver.cpp:105] Iteration 3756, lr = 0.00475204
I0428 17:38:35.683288 8468 solver.cpp:218] Iteration 3768 (2.15792 iter/s, 5.56091s/12 iters), loss = 1.48356
I0428 17:38:35.683327 8468 solver.cpp:237] Train net output #0: loss = 1.48356 (* 1 = 1.48356 loss)
I0428 17:38:35.683337 8468 sgd_solver.cpp:105] Iteration 3768, lr = 0.00474076
I0428 17:38:37.871193 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel
I0428 17:38:39.468806 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate
I0428 17:38:40.240329 8468 solver.cpp:330] Iteration 3774, Testing net (#0)
I0428 17:38:40.240351 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:38:43.458250 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:38:45.120586 8468 solver.cpp:397] Test net output #0: accuracy = 0.32598
I0428 17:38:45.120613 8468 solver.cpp:397] Test net output #1: loss = 3.03422 (* 1 = 3.03422 loss)
I0428 17:38:47.196817 8468 solver.cpp:218] Iteration 3780 (1.0423 iter/s, 11.513s/12 iters), loss = 1.73625
I0428 17:38:47.196858 8468 solver.cpp:237] Train net output #0: loss = 1.73625 (* 1 = 1.73625 loss)
I0428 17:38:47.196867 8468 sgd_solver.cpp:105] Iteration 3780, lr = 0.00472951
I0428 17:38:52.723517 8468 solver.cpp:218] Iteration 3792 (2.17139 iter/s, 5.52643s/12 iters), loss = 1.623
I0428 17:38:52.723557 8468 solver.cpp:237] Train net output #0: loss = 1.623 (* 1 = 1.623 loss)
I0428 17:38:52.723565 8468 sgd_solver.cpp:105] Iteration 3792, lr = 0.00471828
I0428 17:38:58.174346 8468 solver.cpp:218] Iteration 3804 (2.20161 iter/s, 5.45055s/12 iters), loss = 1.51203
I0428 17:38:58.174397 8468 solver.cpp:237] Train net output #0: loss = 1.51203 (* 1 = 1.51203 loss)
I0428 17:38:58.174414 8468 sgd_solver.cpp:105] Iteration 3804, lr = 0.00470707
I0428 17:39:03.677918 8468 solver.cpp:218] Iteration 3816 (2.18051 iter/s, 5.50329s/12 iters), loss = 1.31874
I0428 17:39:03.677968 8468 solver.cpp:237] Train net output #0: loss = 1.31874 (* 1 = 1.31874 loss)
I0428 17:39:03.677978 8468 sgd_solver.cpp:105] Iteration 3816, lr = 0.0046959
I0428 17:39:09.096042 8468 solver.cpp:218] Iteration 3828 (2.2149 iter/s, 5.41784s/12 iters), loss = 1.41622
I0428 17:39:09.096099 8468 solver.cpp:237] Train net output #0: loss = 1.41622 (* 1 = 1.41622 loss)
I0428 17:39:09.096112 8468 sgd_solver.cpp:105] Iteration 3828, lr = 0.00468475
I0428 17:39:14.419648 8468 solver.cpp:218] Iteration 3840 (2.25423 iter/s, 5.32332s/12 iters), loss = 1.51121
I0428 17:39:14.420861 8468 solver.cpp:237] Train net output #0: loss = 1.51121 (* 1 = 1.51121 loss)
I0428 17:39:14.420876 8468 sgd_solver.cpp:105] Iteration 3840, lr = 0.00467363
I0428 17:39:15.625785 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:39:19.773205 8468 solver.cpp:218] Iteration 3852 (2.2421 iter/s, 5.35212s/12 iters), loss = 1.2848
I0428 17:39:19.773254 8468 solver.cpp:237] Train net output #0: loss = 1.2848 (* 1 = 1.2848 loss)
I0428 17:39:19.773265 8468 sgd_solver.cpp:105] Iteration 3852, lr = 0.00466253
I0428 17:39:25.198482 8468 solver.cpp:218] Iteration 3864 (2.21199 iter/s, 5.42499s/12 iters), loss = 1.59569
I0428 17:39:25.198530 8468 solver.cpp:237] Train net output #0: loss = 1.59569 (* 1 = 1.59569 loss)
I0428 17:39:25.198545 8468 sgd_solver.cpp:105] Iteration 3864, lr = 0.00465146
I0428 17:39:30.266368 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel
I0428 17:39:31.661631 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate
I0428 17:39:33.343683 8468 solver.cpp:330] Iteration 3876, Testing net (#0)
I0428 17:39:33.343713 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:39:36.400632 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:39:38.183374 8468 solver.cpp:397] Test net output #0: accuracy = 0.33027
I0428 17:39:38.183404 8468 solver.cpp:397] Test net output #1: loss = 2.9755 (* 1 = 2.9755 loss)
I0428 17:39:38.311877 8468 solver.cpp:218] Iteration 3876 (0.915136 iter/s, 13.1128s/12 iters), loss = 1.43392
I0428 17:39:38.311916 8468 solver.cpp:237] Train net output #0: loss = 1.43392 (* 1 = 1.43392 loss)
I0428 17:39:38.311925 8468 sgd_solver.cpp:105] Iteration 3876, lr = 0.00464042
I0428 17:39:42.819839 8468 solver.cpp:218] Iteration 3888 (2.6621 iter/s, 4.50772s/12 iters), loss = 1.30713
I0428 17:39:42.819887 8468 solver.cpp:237] Train net output #0: loss = 1.30713 (* 1 = 1.30713 loss)
I0428 17:39:42.819898 8468 sgd_solver.cpp:105] Iteration 3888, lr = 0.0046294
I0428 17:39:48.221621 8468 solver.cpp:218] Iteration 3900 (2.2216 iter/s, 5.4015s/12 iters), loss = 1.45476
I0428 17:39:48.221733 8468 solver.cpp:237] Train net output #0: loss = 1.45476 (* 1 = 1.45476 loss)
I0428 17:39:48.221743 8468 sgd_solver.cpp:105] Iteration 3900, lr = 0.00461841
I0428 17:39:53.577301 8468 solver.cpp:218] Iteration 3912 (2.24076 iter/s, 5.35534s/12 iters), loss = 1.35995
I0428 17:39:53.577417 8468 solver.cpp:237] Train net output #0: loss = 1.35995 (* 1 = 1.35995 loss)
I0428 17:39:53.577433 8468 sgd_solver.cpp:105] Iteration 3912, lr = 0.00460744
I0428 17:39:59.087698 8468 solver.cpp:218] Iteration 3924 (2.17784 iter/s, 5.51005s/12 iters), loss = 1.40345
I0428 17:39:59.087738 8468 solver.cpp:237] Train net output #0: loss = 1.40345 (* 1 = 1.40345 loss)
I0428 17:39:59.087747 8468 sgd_solver.cpp:105] Iteration 3924, lr = 0.0045965
I0428 17:40:04.655050 8468 solver.cpp:218] Iteration 3936 (2.15553 iter/s, 5.56708s/12 iters), loss = 1.35754
I0428 17:40:04.655090 8468 solver.cpp:237] Train net output #0: loss = 1.35754 (* 1 = 1.35754 loss)
I0428 17:40:04.655099 8468 sgd_solver.cpp:105] Iteration 3936, lr = 0.00458559
I0428 17:40:08.301116 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:40:10.081784 8468 solver.cpp:218] Iteration 3948 (2.21139 iter/s, 5.42646s/12 iters), loss = 1.59247
I0428 17:40:10.081822 8468 solver.cpp:237] Train net output #0: loss = 1.59247 (* 1 = 1.59247 loss)
I0428 17:40:10.081831 8468 sgd_solver.cpp:105] Iteration 3948, lr = 0.0045747
I0428 17:40:15.531280 8468 solver.cpp:218] Iteration 3960 (2.20215 iter/s, 5.44922s/12 iters), loss = 1.32107
I0428 17:40:15.531327 8468 solver.cpp:237] Train net output #0: loss = 1.32107 (* 1 = 1.32107 loss)
I0428 17:40:15.531338 8468 sgd_solver.cpp:105] Iteration 3960, lr = 0.00456384
I0428 17:40:20.961148 8468 solver.cpp:218] Iteration 3972 (2.21011 iter/s, 5.42958s/12 iters), loss = 1.70977
I0428 17:40:20.961319 8468 solver.cpp:237] Train net output #0: loss = 1.70977 (* 1 = 1.70977 loss)
I0428 17:40:20.961328 8468 sgd_solver.cpp:105] Iteration 3972, lr = 0.00455301
I0428 17:40:23.191725 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel
I0428 17:40:23.790320 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate
I0428 17:40:24.785653 8468 solver.cpp:330] Iteration 3978, Testing net (#0)
I0428 17:40:24.785672 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:40:27.701373 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:40:29.338317 8468 solver.cpp:397] Test net output #0: accuracy = 0.346814
I0428 17:40:29.338349 8468 solver.cpp:397] Test net output #1: loss = 2.85169 (* 1 = 2.85169 loss)
I0428 17:40:31.389266 8468 solver.cpp:218] Iteration 3984 (1.1508 iter/s, 10.4275s/12 iters), loss = 1.41111
I0428 17:40:31.389309 8468 solver.cpp:237] Train net output #0: loss = 1.41111 (* 1 = 1.41111 loss)
I0428 17:40:31.389318 8468 sgd_solver.cpp:105] Iteration 3984, lr = 0.0045422
I0428 17:40:37.107579 8468 solver.cpp:218] Iteration 3996 (2.09863 iter/s, 5.71802s/12 iters), loss = 1.23288
I0428 17:40:37.107620 8468 solver.cpp:237] Train net output #0: loss = 1.23288 (* 1 = 1.23288 loss)
I0428 17:40:37.107631 8468 sgd_solver.cpp:105] Iteration 3996, lr = 0.00453141
I0428 17:40:42.674317 8468 solver.cpp:218] Iteration 4008 (2.15577 iter/s, 5.56646s/12 iters), loss = 1.47905
I0428 17:40:42.674358 8468 solver.cpp:237] Train net output #0: loss = 1.47905 (* 1 = 1.47905 loss)
I0428 17:40:42.674368 8468 sgd_solver.cpp:105] Iteration 4008, lr = 0.00452066
I0428 17:40:48.300979 8468 solver.cpp:218] Iteration 4020 (2.13281 iter/s, 5.62638s/12 iters), loss = 1.46131
I0428 17:40:48.301021 8468 solver.cpp:237] Train net output #0: loss = 1.46131 (* 1 = 1.46131 loss)
I0428 17:40:48.301031 8468 sgd_solver.cpp:105] Iteration 4020, lr = 0.00450992
I0428 17:40:53.919828 8468 solver.cpp:218] Iteration 4032 (2.13578 iter/s, 5.61856s/12 iters), loss = 1.34191
I0428 17:40:53.919948 8468 solver.cpp:237] Train net output #0: loss = 1.34191 (* 1 = 1.34191 loss)
I0428 17:40:53.919970 8468 sgd_solver.cpp:105] Iteration 4032, lr = 0.00449921
I0428 17:40:59.343145 8468 solver.cpp:218] Iteration 4044 (2.21281 iter/s, 5.42298s/12 iters), loss = 1.47853
I0428 17:40:59.343183 8468 solver.cpp:237] Train net output #0: loss = 1.47853 (* 1 = 1.47853 loss)
I0428 17:40:59.343192 8468 sgd_solver.cpp:105] Iteration 4044, lr = 0.00448853
I0428 17:40:59.875064 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:41:04.767264 8468 solver.cpp:218] Iteration 4056 (2.21245 iter/s, 5.42385s/12 iters), loss = 1.05514
I0428 17:41:04.767304 8468 solver.cpp:237] Train net output #0: loss = 1.05514 (* 1 = 1.05514 loss)
I0428 17:41:04.767314 8468 sgd_solver.cpp:105] Iteration 4056, lr = 0.00447788
I0428 17:41:10.224119 8468 solver.cpp:218] Iteration 4068 (2.19918 iter/s, 5.45658s/12 iters), loss = 1.1496
I0428 17:41:10.224155 8468 solver.cpp:237] Train net output #0: loss = 1.1496 (* 1 = 1.1496 loss)
I0428 17:41:10.224166 8468 sgd_solver.cpp:105] Iteration 4068, lr = 0.00446724
I0428 17:41:15.114300 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel
I0428 17:41:15.736812 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate
I0428 17:41:16.166232 8468 solver.cpp:330] Iteration 4080, Testing net (#0)
I0428 17:41:16.166254 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:41:19.170894 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:41:20.883407 8468 solver.cpp:397] Test net output #0: accuracy = 0.356618
I0428 17:41:20.883440 8468 solver.cpp:397] Test net output #1: loss = 2.96314 (* 1 = 2.96314 loss)
I0428 17:41:21.008256 8468 solver.cpp:218] Iteration 4080 (1.11279 iter/s, 10.7837s/12 iters), loss = 1.12266
I0428 17:41:21.008309 8468 solver.cpp:237] Train net output #0: loss = 1.12266 (* 1 = 1.12266 loss)
I0428 17:41:21.008322 8468 sgd_solver.cpp:105] Iteration 4080, lr = 0.00445664
I0428 17:41:25.514258 8468 solver.cpp:218] Iteration 4092 (2.66326 iter/s, 4.50575s/12 iters), loss = 1.43533
I0428 17:41:25.514391 8468 solver.cpp:237] Train net output #0: loss = 1.43533 (* 1 = 1.43533 loss)
I0428 17:41:25.514401 8468 sgd_solver.cpp:105] Iteration 4092, lr = 0.00444606
I0428 17:41:30.903822 8468 solver.cpp:218] Iteration 4104 (2.22668 iter/s, 5.3892s/12 iters), loss = 1.13799
I0428 17:41:30.903862 8468 solver.cpp:237] Train net output #0: loss = 1.13799 (* 1 = 1.13799 loss)
I0428 17:41:30.903874 8468 sgd_solver.cpp:105] Iteration 4104, lr = 0.0044355
I0428 17:41:36.292449 8468 solver.cpp:218] Iteration 4116 (2.22702 iter/s, 5.38836s/12 iters), loss = 1.48287
I0428 17:41:36.292523 8468 solver.cpp:237] Train net output #0: loss = 1.48287 (* 1 = 1.48287 loss)
I0428 17:41:36.292533 8468 sgd_solver.cpp:105] Iteration 4116, lr = 0.00442497
I0428 17:41:41.703379 8468 solver.cpp:218] Iteration 4128 (2.21785 iter/s, 5.41066s/12 iters), loss = 1.28033
I0428 17:41:41.703420 8468 solver.cpp:237] Train net output #0: loss = 1.28033 (* 1 = 1.28033 loss)
I0428 17:41:41.703431 8468 sgd_solver.cpp:105] Iteration 4128, lr = 0.00441447
I0428 17:41:47.171339 8468 solver.cpp:218] Iteration 4140 (2.19471 iter/s, 5.46769s/12 iters), loss = 1.34781
I0428 17:41:47.171373 8468 solver.cpp:237] Train net output #0: loss = 1.34781 (* 1 = 1.34781 loss)
I0428 17:41:47.171383 8468 sgd_solver.cpp:105] Iteration 4140, lr = 0.00440398
I0428 17:41:49.974761 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:41:52.768117 8468 solver.cpp:218] Iteration 4152 (2.14419 iter/s, 5.59651s/12 iters), loss = 1.26655
I0428 17:41:52.768160 8468 solver.cpp:237] Train net output #0: loss = 1.26655 (* 1 = 1.26655 loss)
I0428 17:41:52.768169 8468 sgd_solver.cpp:105] Iteration 4152, lr = 0.00439353
I0428 17:41:53.128172 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:41:58.098143 8468 solver.cpp:218] Iteration 4164 (2.25151 iter/s, 5.32975s/12 iters), loss = 1.20197
I0428 17:41:58.098278 8468 solver.cpp:237] Train net output #0: loss = 1.20197 (* 1 = 1.20197 loss)
I0428 17:41:58.098291 8468 sgd_solver.cpp:105] Iteration 4164, lr = 0.0043831
I0428 17:42:03.444983 8468 solver.cpp:218] Iteration 4176 (2.24447 iter/s, 5.34647s/12 iters), loss = 1.14274
I0428 17:42:03.445034 8468 solver.cpp:237] Train net output #0: loss = 1.14274 (* 1 = 1.14274 loss)
I0428 17:42:03.445048 8468 sgd_solver.cpp:105] Iteration 4176, lr = 0.00437269
I0428 17:42:05.580094 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel
I0428 17:42:07.314091 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate
I0428 17:42:07.986655 8468 solver.cpp:330] Iteration 4182, Testing net (#0)
I0428 17:42:07.986675 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:42:10.820832 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:42:12.563719 8468 solver.cpp:397] Test net output #0: accuracy = 0.334559
I0428 17:42:12.563752 8468 solver.cpp:397] Test net output #1: loss = 3.03912 (* 1 = 3.03912 loss)
I0428 17:42:14.558014 8468 solver.cpp:218] Iteration 4188 (1.07986 iter/s, 11.1125s/12 iters), loss = 1.18118
I0428 17:42:14.558063 8468 solver.cpp:237] Train net output #0: loss = 1.18118 (* 1 = 1.18118 loss)
I0428 17:42:14.558073 8468 sgd_solver.cpp:105] Iteration 4188, lr = 0.00436231
I0428 17:42:19.949329 8468 solver.cpp:218] Iteration 4200 (2.22592 iter/s, 5.39104s/12 iters), loss = 1.19428
I0428 17:42:19.949368 8468 solver.cpp:237] Train net output #0: loss = 1.19428 (* 1 = 1.19428 loss)
I0428 17:42:19.949376 8468 sgd_solver.cpp:105] Iteration 4200, lr = 0.00435195
I0428 17:42:25.426604 8468 solver.cpp:218] Iteration 4212 (2.19098 iter/s, 5.477s/12 iters), loss = 1.15763
I0428 17:42:25.426645 8468 solver.cpp:237] Train net output #0: loss = 1.15763 (* 1 = 1.15763 loss)
I0428 17:42:25.426653 8468 sgd_solver.cpp:105] Iteration 4212, lr = 0.00434162
I0428 17:42:30.774989 8468 solver.cpp:218] Iteration 4224 (2.24378 iter/s, 5.34811s/12 iters), loss = 1.38209
I0428 17:42:30.775116 8468 solver.cpp:237] Train net output #0: loss = 1.38209 (* 1 = 1.38209 loss)
I0428 17:42:30.775125 8468 sgd_solver.cpp:105] Iteration 4224, lr = 0.00433131
I0428 17:42:36.247613 8468 solver.cpp:218] Iteration 4236 (2.19288 iter/s, 5.47226s/12 iters), loss = 1.30894
I0428 17:42:36.247661 8468 solver.cpp:237] Train net output #0: loss = 1.30894 (* 1 = 1.30894 loss)
I0428 17:42:36.247673 8468 sgd_solver.cpp:105] Iteration 4236, lr = 0.00432103
I0428 17:42:41.384080 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:42:41.650053 8468 solver.cpp:218] Iteration 4248 (2.22134 iter/s, 5.40216s/12 iters), loss = 1.09823
I0428 17:42:41.650111 8468 solver.cpp:237] Train net output #0: loss = 1.09823 (* 1 = 1.09823 loss)
I0428 17:42:41.650127 8468 sgd_solver.cpp:105] Iteration 4248, lr = 0.00431077
I0428 17:42:47.069272 8468 solver.cpp:218] Iteration 4260 (2.21446 iter/s, 5.41893s/12 iters), loss = 1.08128
I0428 17:42:47.069317 8468 solver.cpp:237] Train net output #0: loss = 1.08128 (* 1 = 1.08128 loss)
I0428 17:42:47.069329 8468 sgd_solver.cpp:105] Iteration 4260, lr = 0.00430053
I0428 17:42:52.496062 8468 solver.cpp:218] Iteration 4272 (2.21136 iter/s, 5.42652s/12 iters), loss = 1.25113
I0428 17:42:52.496100 8468 solver.cpp:237] Train net output #0: loss = 1.25113 (* 1 = 1.25113 loss)
I0428 17:42:52.496109 8468 sgd_solver.cpp:105] Iteration 4272, lr = 0.00429032
I0428 17:42:57.329811 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel
I0428 17:42:59.192422 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate
I0428 17:43:00.632599 8468 solver.cpp:330] Iteration 4284, Testing net (#0)
I0428 17:43:00.632623 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:43:03.657964 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:43:05.458074 8468 solver.cpp:397] Test net output #0: accuracy = 0.353554
I0428 17:43:05.458110 8468 solver.cpp:397] Test net output #1: loss = 3.03418 (* 1 = 3.03418 loss)
I0428 17:43:05.584740 8468 solver.cpp:218] Iteration 4284 (0.916863 iter/s, 13.0881s/12 iters), loss = 1.34198
I0428 17:43:05.584791 8468 solver.cpp:237] Train net output #0: loss = 1.34198 (* 1 = 1.34198 loss)
I0428 17:43:05.584802 8468 sgd_solver.cpp:105] Iteration 4284, lr = 0.00428014
I0428 17:43:10.077638 8468 solver.cpp:218] Iteration 4296 (2.67103 iter/s, 4.49265s/12 iters), loss = 1.0241
I0428 17:43:10.077680 8468 solver.cpp:237] Train net output #0: loss = 1.0241 (* 1 = 1.0241 loss)
I0428 17:43:10.077690 8468 sgd_solver.cpp:105] Iteration 4296, lr = 0.00426998
I0428 17:43:16.007647 8468 solver.cpp:218] Iteration 4308 (2.02371 iter/s, 5.92971s/12 iters), loss = 1.50578
I0428 17:43:16.007683 8468 solver.cpp:237] Train net output #0: loss = 1.50578 (* 1 = 1.50578 loss)
I0428 17:43:16.007692 8468 sgd_solver.cpp:105] Iteration 4308, lr = 0.00425984
I0428 17:43:21.662235 8468 solver.cpp:218] Iteration 4320 (2.12228 iter/s, 5.65431s/12 iters), loss = 1.21202
I0428 17:43:21.662282 8468 solver.cpp:237] Train net output #0: loss = 1.21202 (* 1 = 1.21202 loss)
I0428 17:43:21.662294 8468 sgd_solver.cpp:105] Iteration 4320, lr = 0.00424972
I0428 17:43:27.286556 8468 solver.cpp:218] Iteration 4332 (2.1337 iter/s, 5.62403s/12 iters), loss = 1.16968
I0428 17:43:27.286597 8468 solver.cpp:237] Train net output #0: loss = 1.16968 (* 1 = 1.16968 loss)
I0428 17:43:27.286607 8468 sgd_solver.cpp:105] Iteration 4332, lr = 0.00423964
I0428 17:43:32.676374 8468 solver.cpp:218] Iteration 4344 (2.22653 iter/s, 5.38955s/12 iters), loss = 1.28333
I0428 17:43:32.676414 8468 solver.cpp:237] Train net output #0: loss = 1.28333 (* 1 = 1.28333 loss)
I0428 17:43:32.676422 8468 sgd_solver.cpp:105] Iteration 4344, lr = 0.00422957
I0428 17:43:34.704982 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:43:38.046250 8468 solver.cpp:218] Iteration 4356 (2.2348 iter/s, 5.36961s/12 iters), loss = 0.945464
I0428 17:43:38.046291 8468 solver.cpp:237] Train net output #0: loss = 0.945464 (* 1 = 0.945464 loss)
I0428 17:43:38.046301 8468 sgd_solver.cpp:105] Iteration 4356, lr = 0.00421953
I0428 17:43:43.424031 8468 solver.cpp:218] Iteration 4368 (2.23152 iter/s, 5.37751s/12 iters), loss = 1.09019
I0428 17:43:43.424069 8468 solver.cpp:237] Train net output #0: loss = 1.09019 (* 1 = 1.09019 loss)
I0428 17:43:43.424078 8468 sgd_solver.cpp:105] Iteration 4368, lr = 0.00420951
I0428 17:43:48.882064 8468 solver.cpp:218] Iteration 4380 (2.1987 iter/s, 5.45777s/12 iters), loss = 0.977747
I0428 17:43:48.882104 8468 solver.cpp:237] Train net output #0: loss = 0.977747 (* 1 = 0.977747 loss)
I0428 17:43:48.882113 8468 sgd_solver.cpp:105] Iteration 4380, lr = 0.00419952
I0428 17:43:51.093924 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel
I0428 17:43:53.122642 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate
I0428 17:43:54.132355 8468 solver.cpp:330] Iteration 4386, Testing net (#0)
I0428 17:43:54.132380 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:43:56.943043 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:43:58.778780 8468 solver.cpp:397] Test net output #0: accuracy = 0.356005
I0428 17:43:58.778815 8468 solver.cpp:397] Test net output #1: loss = 2.95882 (* 1 = 2.95882 loss)
I0428 17:44:00.810194 8468 solver.cpp:218] Iteration 4392 (1.00607 iter/s, 11.9276s/12 iters), loss = 1.06655
I0428 17:44:00.810236 8468 solver.cpp:237] Train net output #0: loss = 1.06655 (* 1 = 1.06655 loss)
I0428 17:44:00.810245 8468 sgd_solver.cpp:105] Iteration 4392, lr = 0.00418954
I0428 17:44:06.292796 8468 solver.cpp:218] Iteration 4404 (2.18885 iter/s, 5.48232s/12 iters), loss = 1.3072
I0428 17:44:06.292909 8468 solver.cpp:237] Train net output #0: loss = 1.3072 (* 1 = 1.3072 loss)
I0428 17:44:06.292919 8468 sgd_solver.cpp:105] Iteration 4404, lr = 0.0041796
I0428 17:44:11.696715 8468 solver.cpp:218] Iteration 4416 (2.22075 iter/s, 5.40357s/12 iters), loss = 1.26519
I0428 17:44:11.696768 8468 solver.cpp:237] Train net output #0: loss = 1.26519 (* 1 = 1.26519 loss)
I0428 17:44:11.696779 8468 sgd_solver.cpp:105] Iteration 4416, lr = 0.00416967
I0428 17:44:17.034554 8468 solver.cpp:218] Iteration 4428 (2.24822 iter/s, 5.33756s/12 iters), loss = 1.21158
I0428 17:44:17.034590 8468 solver.cpp:237] Train net output #0: loss = 1.21158 (* 1 = 1.21158 loss)
I0428 17:44:17.034598 8468 sgd_solver.cpp:105] Iteration 4428, lr = 0.00415977
I0428 17:44:22.667269 8468 solver.cpp:218] Iteration 4440 (2.13052 iter/s, 5.63244s/12 iters), loss = 1.24009
I0428 17:44:22.667311 8468 solver.cpp:237] Train net output #0: loss = 1.24009 (* 1 = 1.24009 loss)
I0428 17:44:22.667320 8468 sgd_solver.cpp:105] Iteration 4440, lr = 0.0041499
I0428 17:44:26.965427 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:44:28.015843 8468 solver.cpp:218] Iteration 4452 (2.2437 iter/s, 5.3483s/12 iters), loss = 1.18084
I0428 17:44:28.015889 8468 solver.cpp:237] Train net output #0: loss = 1.18084 (* 1 = 1.18084 loss)
I0428 17:44:28.015899 8468 sgd_solver.cpp:105] Iteration 4452, lr = 0.00414005
I0428 17:44:33.569205 8468 solver.cpp:218] Iteration 4464 (2.16096 iter/s, 5.55308s/12 iters), loss = 1.11352
I0428 17:44:33.569245 8468 solver.cpp:237] Train net output #0: loss = 1.11352 (* 1 = 1.11352 loss)
I0428 17:44:33.569254 8468 sgd_solver.cpp:105] Iteration 4464, lr = 0.00413022
I0428 17:44:38.997537 8468 solver.cpp:218] Iteration 4476 (2.21074 iter/s, 5.42806s/12 iters), loss = 1.19322
I0428 17:44:38.997700 8468 solver.cpp:237] Train net output #0: loss = 1.19322 (* 1 = 1.19322 loss)
I0428 17:44:38.997714 8468 sgd_solver.cpp:105] Iteration 4476, lr = 0.00412041
I0428 17:44:43.895462 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel
I0428 17:44:44.999861 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate
I0428 17:44:45.919193 8468 solver.cpp:330] Iteration 4488, Testing net (#0)
I0428 17:44:45.919212 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:44:48.784343 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:44:50.637547 8468 solver.cpp:397] Test net output #0: accuracy = 0.338235
I0428 17:44:50.637583 8468 solver.cpp:397] Test net output #1: loss = 3.08541 (* 1 = 3.08541 loss)
I0428 17:44:50.769520 8468 solver.cpp:218] Iteration 4488 (1.01943 iter/s, 11.7713s/12 iters), loss = 1.05536
I0428 17:44:50.769562 8468 solver.cpp:237] Train net output #0: loss = 1.05536 (* 1 = 1.05536 loss)
I0428 17:44:50.769570 8468 sgd_solver.cpp:105] Iteration 4488, lr = 0.00411063
I0428 17:44:55.424571 8468 solver.cpp:218] Iteration 4500 (2.57798 iter/s, 4.65481s/12 iters), loss = 0.914786
I0428 17:44:55.424618 8468 solver.cpp:237] Train net output #0: loss = 0.914786 (* 1 = 0.914786 loss)
I0428 17:44:55.424628 8468 sgd_solver.cpp:105] Iteration 4500, lr = 0.00410087
I0428 17:45:01.082696 8468 solver.cpp:218] Iteration 4512 (2.12095 iter/s, 5.65784s/12 iters), loss = 1.13059
I0428 17:45:01.082739 8468 solver.cpp:237] Train net output #0: loss = 1.13059 (* 1 = 1.13059 loss)
I0428 17:45:01.082751 8468 sgd_solver.cpp:105] Iteration 4512, lr = 0.00409113
I0428 17:45:06.534590 8468 solver.cpp:218] Iteration 4524 (2.20118 iter/s, 5.45162s/12 iters), loss = 0.957494
I0428 17:45:06.534627 8468 solver.cpp:237] Train net output #0: loss = 0.957494 (* 1 = 0.957494 loss)
I0428 17:45:06.534638 8468 sgd_solver.cpp:105] Iteration 4524, lr = 0.00408142
I0428 17:45:12.138401 8468 solver.cpp:218] Iteration 4536 (2.14151 iter/s, 5.60353s/12 iters), loss = 1.08411
I0428 17:45:12.138527 8468 solver.cpp:237] Train net output #0: loss = 1.08411 (* 1 = 1.08411 loss)
I0428 17:45:12.138536 8468 sgd_solver.cpp:105] Iteration 4536, lr = 0.00407173
I0428 17:45:17.556891 8468 solver.cpp:218] Iteration 4548 (2.21478 iter/s, 5.41814s/12 iters), loss = 0.907159
I0428 17:45:17.556929 8468 solver.cpp:237] Train net output #0: loss = 0.907159 (* 1 = 0.907159 loss)
I0428 17:45:17.556941 8468 sgd_solver.cpp:105] Iteration 4548, lr = 0.00406206
I0428 17:45:18.931892 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:45:22.968148 8468 solver.cpp:218] Iteration 4560 (2.21771 iter/s, 5.41098s/12 iters), loss = 1.24683
I0428 17:45:22.968201 8468 solver.cpp:237] Train net output #0: loss = 1.24683 (* 1 = 1.24683 loss)
I0428 17:45:22.968214 8468 sgd_solver.cpp:105] Iteration 4560, lr = 0.00405242
I0428 17:45:28.418013 8468 solver.cpp:218] Iteration 4572 (2.202 iter/s, 5.44958s/12 iters), loss = 1.11551
I0428 17:45:28.418051 8468 solver.cpp:237] Train net output #0: loss = 1.11551 (* 1 = 1.11551 loss)
I0428 17:45:28.418062 8468 sgd_solver.cpp:105] Iteration 4572, lr = 0.0040428
I0428 17:45:33.880229 8468 solver.cpp:218] Iteration 4584 (2.19702 iter/s, 5.46194s/12 iters), loss = 0.873448
I0428 17:45:33.880266 8468 solver.cpp:237] Train net output #0: loss = 0.873448 (* 1 = 0.873448 loss)
I0428 17:45:33.880275 8468 sgd_solver.cpp:105] Iteration 4584, lr = 0.0040332
I0428 17:45:36.094099 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel
I0428 17:45:38.328698 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate
I0428 17:45:40.972591 8468 solver.cpp:330] Iteration 4590, Testing net (#0)
I0428 17:45:40.972613 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:45:43.677330 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:45:45.901691 8468 solver.cpp:397] Test net output #0: accuracy = 0.371324
I0428 17:45:45.901743 8468 solver.cpp:397] Test net output #1: loss = 3.11403 (* 1 = 3.11403 loss)
I0428 17:45:47.962476 8468 solver.cpp:218] Iteration 4596 (0.852174 iter/s, 14.0816s/12 iters), loss = 1.14536
I0428 17:45:47.962517 8468 solver.cpp:237] Train net output #0: loss = 1.14536 (* 1 = 1.14536 loss)
I0428 17:45:47.962528 8468 sgd_solver.cpp:105] Iteration 4596, lr = 0.00402362
I0428 17:45:53.447772 8468 solver.cpp:218] Iteration 4608 (2.18777 iter/s, 5.48503s/12 iters), loss = 1.03592
I0428 17:45:53.447804 8468 solver.cpp:237] Train net output #0: loss = 1.03592 (* 1 = 1.03592 loss)
I0428 17:45:53.447813 8468 sgd_solver.cpp:105] Iteration 4608, lr = 0.00401407
I0428 17:45:58.907783 8468 solver.cpp:218] Iteration 4620 (2.1979 iter/s, 5.45975s/12 iters), loss = 1.20053
I0428 17:45:58.907819 8468 solver.cpp:237] Train net output #0: loss = 1.20053 (* 1 = 1.20053 loss)
I0428 17:45:58.907827 8468 sgd_solver.cpp:105] Iteration 4620, lr = 0.00400454
I0428 17:46:04.459268 8468 solver.cpp:218] Iteration 4632 (2.16169 iter/s, 5.55121s/12 iters), loss = 1.00673
I0428 17:46:04.459306 8468 solver.cpp:237] Train net output #0: loss = 1.00673 (* 1 = 1.00673 loss)
I0428 17:46:04.459316 8468 sgd_solver.cpp:105] Iteration 4632, lr = 0.00399503
I0428 17:46:10.043920 8468 solver.cpp:218] Iteration 4644 (2.14885 iter/s, 5.58438s/12 iters), loss = 0.95195
I0428 17:46:10.043962 8468 solver.cpp:237] Train net output #0: loss = 0.95195 (* 1 = 0.95195 loss)
I0428 17:46:10.043972 8468 sgd_solver.cpp:105] Iteration 4644, lr = 0.00398555
I0428 17:46:13.816215 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:46:15.771601 8468 solver.cpp:218] Iteration 4656 (2.09519 iter/s, 5.7274s/12 iters), loss = 1.01703
I0428 17:46:15.771638 8468 solver.cpp:237] Train net output #0: loss = 1.01703 (* 1 = 1.01703 loss)
I0428 17:46:15.771646 8468 sgd_solver.cpp:105] Iteration 4656, lr = 0.00397608
I0428 17:46:21.143431 8468 solver.cpp:218] Iteration 4668 (2.23399 iter/s, 5.37156s/12 iters), loss = 1.0241
I0428 17:46:21.143473 8468 solver.cpp:237] Train net output #0: loss = 1.0241 (* 1 = 1.0241 loss)
I0428 17:46:21.143481 8468 sgd_solver.cpp:105] Iteration 4668, lr = 0.00396664
I0428 17:46:26.661335 8468 solver.cpp:218] Iteration 4680 (2.17485 iter/s, 5.51763s/12 iters), loss = 0.960551
I0428 17:46:26.661386 8468 solver.cpp:237] Train net output #0: loss = 0.960551 (* 1 = 0.960551 loss)
I0428 17:46:26.661394 8468 sgd_solver.cpp:105] Iteration 4680, lr = 0.00395723
I0428 17:46:31.537106 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel
I0428 17:46:32.128628 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate
I0428 17:46:32.570268 8468 solver.cpp:330] Iteration 4692, Testing net (#0)
I0428 17:46:32.570286 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:46:35.239161 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:46:37.167634 8468 solver.cpp:397] Test net output #0: accuracy = 0.367647
I0428 17:46:37.167670 8468 solver.cpp:397] Test net output #1: loss = 3.1164 (* 1 = 3.1164 loss)
I0428 17:46:37.299407 8468 solver.cpp:218] Iteration 4692 (1.12808 iter/s, 10.6376s/12 iters), loss = 1.11412
I0428 17:46:37.299458 8468 solver.cpp:237] Train net output #0: loss = 1.11412 (* 1 = 1.11412 loss)
I0428 17:46:37.299469 8468 sgd_solver.cpp:105] Iteration 4692, lr = 0.00394783
I0428 17:46:41.791623 8468 solver.cpp:218] Iteration 4704 (2.67143 iter/s, 4.49197s/12 iters), loss = 0.890307
I0428 17:46:41.791666 8468 solver.cpp:237] Train net output #0: loss = 0.890307 (* 1 = 0.890307 loss)
I0428 17:46:41.791676 8468 sgd_solver.cpp:105] Iteration 4704, lr = 0.00393846
I0428 17:46:47.302503 8468 solver.cpp:218] Iteration 4716 (2.17762 iter/s, 5.5106s/12 iters), loss = 1.2413
I0428 17:46:47.302645 8468 solver.cpp:237] Train net output #0: loss = 1.2413 (* 1 = 1.2413 loss)
I0428 17:46:47.302657 8468 sgd_solver.cpp:105] Iteration 4716, lr = 0.00392911
I0428 17:46:52.831156 8468 solver.cpp:218] Iteration 4728 (2.17066 iter/s, 5.52828s/12 iters), loss = 1.10757
I0428 17:46:52.831197 8468 solver.cpp:237] Train net output #0: loss = 1.10757 (* 1 = 1.10757 loss)
I0428 17:46:52.831205 8468 sgd_solver.cpp:105] Iteration 4728, lr = 0.00391978
I0428 17:46:58.225349 8468 solver.cpp:218] Iteration 4740 (2.22473 iter/s, 5.39392s/12 iters), loss = 1.21627
I0428 17:46:58.225405 8468 solver.cpp:237] Train net output #0: loss = 1.21627 (* 1 = 1.21627 loss)
I0428 17:46:58.225420 8468 sgd_solver.cpp:105] Iteration 4740, lr = 0.00391047
I0428 17:47:03.542412 8468 solver.cpp:218] Iteration 4752 (2.25701 iter/s, 5.31678s/12 iters), loss = 0.860933
I0428 17:47:03.542466 8468 solver.cpp:237] Train net output #0: loss = 0.860933 (* 1 = 0.860933 loss)
I0428 17:47:03.542479 8468 sgd_solver.cpp:105] Iteration 4752, lr = 0.00390119
I0428 17:47:04.106925 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:47:08.921983 8468 solver.cpp:218] Iteration 4764 (2.23078 iter/s, 5.37929s/12 iters), loss = 0.802402
I0428 17:47:08.922019 8468 solver.cpp:237] Train net output #0: loss = 0.802402 (* 1 = 0.802402 loss)
I0428 17:47:08.922029 8468 sgd_solver.cpp:105] Iteration 4764, lr = 0.00389193
I0428 17:47:14.427367 8468 solver.cpp:218] Iteration 4776 (2.17979 iter/s, 5.50511s/12 iters), loss = 0.743593
I0428 17:47:14.427405 8468 solver.cpp:237] Train net output #0: loss = 0.743593 (* 1 = 0.743593 loss)
I0428 17:47:14.427415 8468 sgd_solver.cpp:105] Iteration 4776, lr = 0.00388269
I0428 17:47:19.884403 8468 solver.cpp:218] Iteration 4788 (2.1991 iter/s, 5.45677s/12 iters), loss = 0.975918
I0428 17:47:19.884546 8468 solver.cpp:237] Train net output #0: loss = 0.975918 (* 1 = 0.975918 loss)
I0428 17:47:19.884554 8468 sgd_solver.cpp:105] Iteration 4788, lr = 0.00387347
I0428 17:47:22.088258 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel
I0428 17:47:23.305272 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate
I0428 17:47:25.367741 8468 solver.cpp:330] Iteration 4794, Testing net (#0)
I0428 17:47:25.367763 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:47:28.296888 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:47:30.355350 8468 solver.cpp:397] Test net output #0: accuracy = 0.36826
I0428 17:47:30.355384 8468 solver.cpp:397] Test net output #1: loss = 3.16746 (* 1 = 3.16746 loss)
I0428 17:47:32.295805 8468 solver.cpp:218] Iteration 4800 (0.966904 iter/s, 12.4108s/12 iters), loss = 0.93234
I0428 17:47:32.295846 8468 solver.cpp:237] Train net output #0: loss = 0.93234 (* 1 = 0.93234 loss)
I0428 17:47:32.295856 8468 sgd_solver.cpp:105] Iteration 4800, lr = 0.00386427
I0428 17:47:37.695345 8468 solver.cpp:218] Iteration 4812 (2.22252 iter/s, 5.39927s/12 iters), loss = 0.914465
I0428 17:47:37.695387 8468 solver.cpp:237] Train net output #0: loss = 0.914465 (* 1 = 0.914465 loss)
I0428 17:47:37.695397 8468 sgd_solver.cpp:105] Iteration 4812, lr = 0.0038551
I0428 17:47:43.218232 8468 solver.cpp:218] Iteration 4824 (2.17289 iter/s, 5.5226s/12 iters), loss = 1.05685
I0428 17:47:43.218281 8468 solver.cpp:237] Train net output #0: loss = 1.05685 (* 1 = 1.05685 loss)
I0428 17:47:43.218293 8468 sgd_solver.cpp:105] Iteration 4824, lr = 0.00384594
I0428 17:47:48.654718 8468 solver.cpp:218] Iteration 4836 (2.20742 iter/s, 5.43621s/12 iters), loss = 1.00205
I0428 17:47:48.654762 8468 solver.cpp:237] Train net output #0: loss = 1.00205 (* 1 = 1.00205 loss)
I0428 17:47:48.654772 8468 sgd_solver.cpp:105] Iteration 4836, lr = 0.00383681
I0428 17:47:49.461032 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:47:54.020440 8468 solver.cpp:218] Iteration 4848 (2.23653 iter/s, 5.36545s/12 iters), loss = 0.740278
I0428 17:47:54.020606 8468 solver.cpp:237] Train net output #0: loss = 0.740278 (* 1 = 0.740278 loss)
I0428 17:47:54.020615 8468 sgd_solver.cpp:105] Iteration 4848, lr = 0.0038277
I0428 17:47:56.955641 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:47:59.535576 8468 solver.cpp:218] Iteration 4860 (2.17599 iter/s, 5.51474s/12 iters), loss = 0.77842
I0428 17:47:59.535616 8468 solver.cpp:237] Train net output #0: loss = 0.77842 (* 1 = 0.77842 loss)
I0428 17:47:59.535624 8468 sgd_solver.cpp:105] Iteration 4860, lr = 0.00381862
I0428 17:48:05.018786 8468 solver.cpp:218] Iteration 4872 (2.18861 iter/s, 5.48292s/12 iters), loss = 0.984421
I0428 17:48:05.018842 8468 solver.cpp:237] Train net output #0: loss = 0.984421 (* 1 = 0.984421 loss)
I0428 17:48:05.018855 8468 sgd_solver.cpp:105] Iteration 4872, lr = 0.00380955
I0428 17:48:10.375396 8468 solver.cpp:218] Iteration 4884 (2.24034 iter/s, 5.35632s/12 iters), loss = 0.758592
I0428 17:48:10.375439 8468 solver.cpp:237] Train net output #0: loss = 0.758592 (* 1 = 0.758592 loss)
I0428 17:48:10.375449 8468 sgd_solver.cpp:105] Iteration 4884, lr = 0.0038005
I0428 17:48:15.432865 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel
I0428 17:48:16.008826 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate
I0428 17:48:16.458868 8468 solver.cpp:330] Iteration 4896, Testing net (#0)
I0428 17:48:16.458889 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:48:19.079165 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:48:21.189038 8468 solver.cpp:397] Test net output #0: accuracy = 0.371324
I0428 17:48:21.189069 8468 solver.cpp:397] Test net output #1: loss = 3.11304 (* 1 = 3.11304 loss)
I0428 17:48:21.313225 8468 solver.cpp:218] Iteration 4896 (1.09716 iter/s, 10.9373s/12 iters), loss = 0.874247
I0428 17:48:21.313263 8468 solver.cpp:237] Train net output #0: loss = 0.874247 (* 1 = 0.874247 loss)
I0428 17:48:21.313271 8468 sgd_solver.cpp:105] Iteration 4896, lr = 0.00379148
I0428 17:48:25.793380 8468 solver.cpp:218] Iteration 4908 (2.67862 iter/s, 4.47992s/12 iters), loss = 0.863705
I0428 17:48:25.793504 8468 solver.cpp:237] Train net output #0: loss = 0.863705 (* 1 = 0.863705 loss)
I0428 17:48:25.793515 8468 sgd_solver.cpp:105] Iteration 4908, lr = 0.00378248
I0428 17:48:31.227005 8468 solver.cpp:218] Iteration 4920 (2.20862 iter/s, 5.43327s/12 iters), loss = 0.910319
I0428 17:48:31.227044 8468 solver.cpp:237] Train net output #0: loss = 0.910319 (* 1 = 0.910319 loss)
I0428 17:48:31.227053 8468 sgd_solver.cpp:105] Iteration 4920, lr = 0.0037735
I0428 17:48:36.659436 8468 solver.cpp:218] Iteration 4932 (2.20907 iter/s, 5.43216s/12 iters), loss = 0.999637
I0428 17:48:36.659473 8468 solver.cpp:237] Train net output #0: loss = 0.999637 (* 1 = 0.999637 loss)
I0428 17:48:36.659485 8468 sgd_solver.cpp:105] Iteration 4932, lr = 0.00376454
I0428 17:48:42.208092 8468 solver.cpp:218] Iteration 4944 (2.1628 iter/s, 5.54837s/12 iters), loss = 0.832636
I0428 17:48:42.208143 8468 solver.cpp:237] Train net output #0: loss = 0.832636 (* 1 = 0.832636 loss)
I0428 17:48:42.208154 8468 sgd_solver.cpp:105] Iteration 4944, lr = 0.0037556
I0428 17:48:47.278393 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:48:47.513454 8468 solver.cpp:218] Iteration 4956 (2.26198 iter/s, 5.30508s/12 iters), loss = 0.856759
I0428 17:48:47.513494 8468 solver.cpp:237] Train net output #0: loss = 0.856759 (* 1 = 0.856759 loss)
I0428 17:48:47.513504 8468 sgd_solver.cpp:105] Iteration 4956, lr = 0.00374669
I0428 17:48:52.938333 8468 solver.cpp:218] Iteration 4968 (2.21214 iter/s, 5.4246s/12 iters), loss = 0.666333
I0428 17:48:52.938383 8468 solver.cpp:237] Train net output #0: loss = 0.666333 (* 1 = 0.666333 loss)
I0428 17:48:52.938395 8468 sgd_solver.cpp:105] Iteration 4968, lr = 0.00373779
I0428 17:48:58.404229 8468 solver.cpp:218] Iteration 4980 (2.19555 iter/s, 5.46561s/12 iters), loss = 0.65488
I0428 17:48:58.404414 8468 solver.cpp:237] Train net output #0: loss = 0.65488 (* 1 = 0.65488 loss)
I0428 17:48:58.404428 8468 sgd_solver.cpp:105] Iteration 4980, lr = 0.00372892
I0428 17:49:03.967875 8468 solver.cpp:218] Iteration 4992 (2.15702 iter/s, 5.56323s/12 iters), loss = 0.786931
I0428 17:49:03.967911 8468 solver.cpp:237] Train net output #0: loss = 0.786931 (* 1 = 0.786931 loss)
I0428 17:49:03.967919 8468 sgd_solver.cpp:105] Iteration 4992, lr = 0.00372006
I0428 17:49:06.186271 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel
I0428 17:49:07.745800 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate
I0428 17:49:09.160414 8468 solver.cpp:330] Iteration 4998, Testing net (#0)
I0428 17:49:09.160432 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:49:11.815682 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:49:13.961311 8468 solver.cpp:397] Test net output #0: accuracy = 0.390931
I0428 17:49:13.961351 8468 solver.cpp:397] Test net output #1: loss = 3.12209 (* 1 = 3.12209 loss)
I0428 17:49:15.979162 8468 solver.cpp:218] Iteration 5004 (0.999105 iter/s, 12.0107s/12 iters), loss = 0.995208
I0428 17:49:15.979208 8468 solver.cpp:237] Train net output #0: loss = 0.995208 (* 1 = 0.995208 loss)
I0428 17:49:15.979219 8468 sgd_solver.cpp:105] Iteration 5004, lr = 0.00371123
I0428 17:49:21.374142 8468 solver.cpp:218] Iteration 5016 (2.22441 iter/s, 5.3947s/12 iters), loss = 0.785567
I0428 17:49:21.374181 8468 solver.cpp:237] Train net output #0: loss = 0.785567 (* 1 = 0.785567 loss)
I0428 17:49:21.374191 8468 sgd_solver.cpp:105] Iteration 5016, lr = 0.00370242
I0428 17:49:26.786681 8468 solver.cpp:218] Iteration 5028 (2.21719 iter/s, 5.41226s/12 iters), loss = 0.72998
I0428 17:49:26.786725 8468 solver.cpp:237] Train net output #0: loss = 0.72998 (* 1 = 0.72998 loss)
I0428 17:49:26.786733 8468 sgd_solver.cpp:105] Iteration 5028, lr = 0.00369363
I0428 17:49:32.206027 8468 solver.cpp:218] Iteration 5040 (2.2144 iter/s, 5.41906s/12 iters), loss = 0.800788
I0428 17:49:32.206157 8468 solver.cpp:237] Train net output #0: loss = 0.800788 (* 1 = 0.800788 loss)
I0428 17:49:32.206169 8468 sgd_solver.cpp:105] Iteration 5040, lr = 0.00368486
I0428 17:49:37.776350 8468 solver.cpp:218] Iteration 5052 (2.15442 iter/s, 5.56995s/12 iters), loss = 0.84946
I0428 17:49:37.776403 8468 solver.cpp:237] Train net output #0: loss = 0.84946 (* 1 = 0.84946 loss)
I0428 17:49:37.776417 8468 sgd_solver.cpp:105] Iteration 5052, lr = 0.00367611
I0428 17:49:39.839232 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:49:43.230552 8468 solver.cpp:218] Iteration 5064 (2.20025 iter/s, 5.45392s/12 iters), loss = 0.762099
I0428 17:49:43.230604 8468 solver.cpp:237] Train net output #0: loss = 0.762099 (* 1 = 0.762099 loss)
I0428 17:49:43.230618 8468 sgd_solver.cpp:105] Iteration 5064, lr = 0.00366738
I0428 17:49:48.774330 8468 solver.cpp:218] Iteration 5076 (2.1647 iter/s, 5.54349s/12 iters), loss = 0.745801
I0428 17:49:48.774369 8468 solver.cpp:237] Train net output #0: loss = 0.745801 (* 1 = 0.745801 loss)
I0428 17:49:48.774379 8468 sgd_solver.cpp:105] Iteration 5076, lr = 0.00365868
I0428 17:49:54.178025 8468 solver.cpp:218] Iteration 5088 (2.22082 iter/s, 5.40342s/12 iters), loss = 0.814838
I0428 17:49:54.178076 8468 solver.cpp:237] Train net output #0: loss = 0.814838 (* 1 = 0.814838 loss)
I0428 17:49:54.178087 8468 sgd_solver.cpp:105] Iteration 5088, lr = 0.00364999
I0428 17:49:59.217453 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel
I0428 17:49:59.802321 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate
I0428 17:50:00.251600 8468 solver.cpp:330] Iteration 5100, Testing net (#0)
I0428 17:50:00.251623 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:50:02.774519 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:50:05.054327 8468 solver.cpp:397] Test net output #0: accuracy = 0.378676
I0428 17:50:05.054358 8468 solver.cpp:397] Test net output #1: loss = 3.13944 (* 1 = 3.13944 loss)
I0428 17:50:05.185420 8468 solver.cpp:218] Iteration 5100 (1.09023 iter/s, 11.0069s/12 iters), loss = 0.730811
I0428 17:50:05.185467 8468 solver.cpp:237] Train net output #0: loss = 0.730811 (* 1 = 0.730811 loss)
I0428 17:50:05.185477 8468 sgd_solver.cpp:105] Iteration 5100, lr = 0.00364132
I0428 17:50:09.673179 8468 solver.cpp:218] Iteration 5112 (2.67409 iter/s, 4.48751s/12 iters), loss = 0.693284
I0428 17:50:09.673236 8468 solver.cpp:237] Train net output #0: loss = 0.693284 (* 1 = 0.693284 loss)
I0428 17:50:09.673249 8468 sgd_solver.cpp:105] Iteration 5112, lr = 0.00363268
I0428 17:50:15.048292 8468 solver.cpp:218] Iteration 5124 (2.23263 iter/s, 5.37482s/12 iters), loss = 0.900779
I0428 17:50:15.048346 8468 solver.cpp:237] Train net output #0: loss = 0.900779 (* 1 = 0.900779 loss)
I0428 17:50:15.048358 8468 sgd_solver.cpp:105] Iteration 5124, lr = 0.00362405
I0428 17:50:20.472878 8468 solver.cpp:218] Iteration 5136 (2.21227 iter/s, 5.4243s/12 iters), loss = 0.645711
I0428 17:50:20.472935 8468 solver.cpp:237] Train net output #0: loss = 0.645711 (* 1 = 0.645711 loss)
I0428 17:50:20.472949 8468 sgd_solver.cpp:105] Iteration 5136, lr = 0.00361545
I0428 17:50:26.068372 8468 solver.cpp:218] Iteration 5148 (2.1447 iter/s, 5.5952s/12 iters), loss = 0.900007
I0428 17:50:26.068408 8468 solver.cpp:237] Train net output #0: loss = 0.900007 (* 1 = 0.900007 loss)
I0428 17:50:26.068418 8468 sgd_solver.cpp:105] Iteration 5148, lr = 0.00360687
I0428 17:50:30.481637 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:50:31.508385 8468 solver.cpp:218] Iteration 5160 (2.20599 iter/s, 5.43974s/12 iters), loss = 0.736091
I0428 17:50:31.508433 8468 solver.cpp:237] Train net output #0: loss = 0.736091 (* 1 = 0.736091 loss)
I0428 17:50:31.508445 8468 sgd_solver.cpp:105] Iteration 5160, lr = 0.0035983
I0428 17:50:36.874819 8468 solver.cpp:218] Iteration 5172 (2.23624 iter/s, 5.36615s/12 iters), loss = 0.965784
I0428 17:50:36.874950 8468 solver.cpp:237] Train net output #0: loss = 0.965784 (* 1 = 0.965784 loss)
I0428 17:50:36.874961 8468 sgd_solver.cpp:105] Iteration 5172, lr = 0.00358976
I0428 17:50:42.365674 8468 solver.cpp:218] Iteration 5184 (2.1856 iter/s, 5.49049s/12 iters), loss = 0.781846
I0428 17:50:42.365731 8468 solver.cpp:237] Train net output #0: loss = 0.781846 (* 1 = 0.781846 loss)
I0428 17:50:42.365744 8468 sgd_solver.cpp:105] Iteration 5184, lr = 0.00358124
I0428 17:50:47.683837 8468 solver.cpp:218] Iteration 5196 (2.25654 iter/s, 5.31788s/12 iters), loss = 0.890157
I0428 17:50:47.683890 8468 solver.cpp:237] Train net output #0: loss = 0.890157 (* 1 = 0.890157 loss)
I0428 17:50:47.683904 8468 sgd_solver.cpp:105] Iteration 5196, lr = 0.00357273
I0428 17:50:49.940605 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel
I0428 17:50:51.137336 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate
I0428 17:50:52.426414 8468 solver.cpp:330] Iteration 5202, Testing net (#0)
I0428 17:50:52.426440 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:50:54.923692 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:50:57.054370 8468 solver.cpp:397] Test net output #0: accuracy = 0.365809
I0428 17:50:57.054399 8468 solver.cpp:397] Test net output #1: loss = 3.25544 (* 1 = 3.25544 loss)
I0428 17:50:59.106398 8468 solver.cpp:218] Iteration 5208 (1.0506 iter/s, 11.422s/12 iters), loss = 0.77476
I0428 17:50:59.106444 8468 solver.cpp:237] Train net output #0: loss = 0.77476 (* 1 = 0.77476 loss)
I0428 17:50:59.106456 8468 sgd_solver.cpp:105] Iteration 5208, lr = 0.00356425
I0428 17:51:04.479846 8468 solver.cpp:218] Iteration 5220 (2.23332 iter/s, 5.37317s/12 iters), loss = 0.846049
I0428 17:51:04.479887 8468 solver.cpp:237] Train net output #0: loss = 0.846049 (* 1 = 0.846049 loss)
I0428 17:51:04.479897 8468 sgd_solver.cpp:105] Iteration 5220, lr = 0.00355579
I0428 17:51:09.997431 8468 solver.cpp:218] Iteration 5232 (2.17497 iter/s, 5.51731s/12 iters), loss = 0.657488
I0428 17:51:09.997558 8468 solver.cpp:237] Train net output #0: loss = 0.657488 (* 1 = 0.657488 loss)
I0428 17:51:09.997568 8468 sgd_solver.cpp:105] Iteration 5232, lr = 0.00354735
I0428 17:51:15.349637 8468 solver.cpp:218] Iteration 5244 (2.24222 iter/s, 5.35185s/12 iters), loss = 0.794706
I0428 17:51:15.349696 8468 solver.cpp:237] Train net output #0: loss = 0.794706 (* 1 = 0.794706 loss)
I0428 17:51:15.349712 8468 sgd_solver.cpp:105] Iteration 5244, lr = 0.00353892
I0428 17:51:20.697541 8468 solver.cpp:218] Iteration 5256 (2.24399 iter/s, 5.34762s/12 iters), loss = 0.697988
I0428 17:51:20.697594 8468 solver.cpp:237] Train net output #0: loss = 0.697988 (* 1 = 0.697988 loss)
I0428 17:51:20.697607 8468 sgd_solver.cpp:105] Iteration 5256, lr = 0.00353052
I0428 17:51:22.070025 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:51:26.007920 8468 solver.cpp:218] Iteration 5268 (2.25985 iter/s, 5.3101s/12 iters), loss = 0.653765
I0428 17:51:26.007973 8468 solver.cpp:237] Train net output #0: loss = 0.653765 (* 1 = 0.653765 loss)
I0428 17:51:26.007985 8468 sgd_solver.cpp:105] Iteration 5268, lr = 0.00352214
I0428 17:51:31.335263 8468 solver.cpp:218] Iteration 5280 (2.25265 iter/s, 5.32706s/12 iters), loss = 0.629717
I0428 17:51:31.335319 8468 solver.cpp:237] Train net output #0: loss = 0.629717 (* 1 = 0.629717 loss)
I0428 17:51:31.335330 8468 sgd_solver.cpp:105] Iteration 5280, lr = 0.00351378
I0428 17:51:36.870496 8468 solver.cpp:218] Iteration 5292 (2.16804 iter/s, 5.53494s/12 iters), loss = 0.529399
I0428 17:51:36.870535 8468 solver.cpp:237] Train net output #0: loss = 0.529399 (* 1 = 0.529399 loss)
I0428 17:51:36.870546 8468 sgd_solver.cpp:105] Iteration 5292, lr = 0.00350544
I0428 17:51:41.983815 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel
I0428 17:51:42.592370 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate
I0428 17:51:43.040052 8468 solver.cpp:330] Iteration 5304, Testing net (#0)
I0428 17:51:43.040076 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:51:45.400205 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:51:47.677848 8468 solver.cpp:397] Test net output #0: accuracy = 0.384804
I0428 17:51:47.677889 8468 solver.cpp:397] Test net output #1: loss = 3.18093 (* 1 = 3.18093 loss)
I0428 17:51:47.808743 8468 solver.cpp:218] Iteration 5304 (1.09712 iter/s, 10.9377s/12 iters), loss = 0.708282
I0428 17:51:47.808807 8468 solver.cpp:237] Train net output #0: loss = 0.708282 (* 1 = 0.708282 loss)
I0428 17:51:47.808820 8468 sgd_solver.cpp:105] Iteration 5304, lr = 0.00349711
I0428 17:51:52.386581 8468 solver.cpp:218] Iteration 5316 (2.62148 iter/s, 4.57757s/12 iters), loss = 0.571965
I0428 17:51:52.386637 8468 solver.cpp:237] Train net output #0: loss = 0.571965 (* 1 = 0.571965 loss)
I0428 17:51:52.386651 8468 sgd_solver.cpp:105] Iteration 5316, lr = 0.00348881
I0428 17:51:57.855113 8468 solver.cpp:218] Iteration 5328 (2.19449 iter/s, 5.46824s/12 iters), loss = 0.645203
I0428 17:51:57.855173 8468 solver.cpp:237] Train net output #0: loss = 0.645203 (* 1 = 0.645203 loss)
I0428 17:51:57.855187 8468 sgd_solver.cpp:105] Iteration 5328, lr = 0.00348053
I0428 17:52:03.339264 8468 solver.cpp:218] Iteration 5340 (2.18824 iter/s, 5.48386s/12 iters), loss = 0.471589
I0428 17:52:03.339320 8468 solver.cpp:237] Train net output #0: loss = 0.471589 (* 1 = 0.471589 loss)
I0428 17:52:03.339332 8468 sgd_solver.cpp:105] Iteration 5340, lr = 0.00347226
I0428 17:52:08.675074 8468 solver.cpp:218] Iteration 5352 (2.24908 iter/s, 5.33553s/12 iters), loss = 0.830403
I0428 17:52:08.675130 8468 solver.cpp:237] Train net output #0: loss = 0.830403 (* 1 = 0.830403 loss)
I0428 17:52:08.675143 8468 sgd_solver.cpp:105] Iteration 5352, lr = 0.00346402
I0428 17:52:12.309276 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:52:13.994529 8468 solver.cpp:218] Iteration 5364 (2.25599 iter/s, 5.31917s/12 iters), loss = 0.570808
I0428 17:52:13.994586 8468 solver.cpp:237] Train net output #0: loss = 0.570808 (* 1 = 0.570808 loss)
I0428 17:52:13.994601 8468 sgd_solver.cpp:105] Iteration 5364, lr = 0.0034558
I0428 17:52:19.309195 8468 solver.cpp:218] Iteration 5376 (2.25802 iter/s, 5.31438s/12 iters), loss = 0.681939
I0428 17:52:19.309240 8468 solver.cpp:237] Train net output #0: loss = 0.681939 (* 1 = 0.681939 loss)
I0428 17:52:19.309255 8468 sgd_solver.cpp:105] Iteration 5376, lr = 0.00344759
I0428 17:52:24.826156 8468 solver.cpp:218] Iteration 5388 (2.17522 iter/s, 5.51668s/12 iters), loss = 0.62887
I0428 17:52:24.826197 8468 solver.cpp:237] Train net output #0: loss = 0.62887 (* 1 = 0.62887 loss)
I0428 17:52:24.826206 8468 sgd_solver.cpp:105] Iteration 5388, lr = 0.00343941
I0428 17:52:30.311172 8468 solver.cpp:218] Iteration 5400 (2.18789 iter/s, 5.48474s/12 iters), loss = 0.616765
I0428 17:52:30.311214 8468 solver.cpp:237] Train net output #0: loss = 0.616765 (* 1 = 0.616765 loss)
I0428 17:52:30.311223 8468 sgd_solver.cpp:105] Iteration 5400, lr = 0.00343124
I0428 17:52:32.511884 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel
I0428 17:52:33.112673 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate
I0428 17:52:33.539885 8468 solver.cpp:330] Iteration 5406, Testing net (#0)
I0428 17:52:33.539903 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:52:35.964006 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:52:38.327014 8468 solver.cpp:397] Test net output #0: accuracy = 0.392157
I0428 17:52:38.327055 8468 solver.cpp:397] Test net output #1: loss = 3.34842 (* 1 = 3.34842 loss)
I0428 17:52:40.256183 8468 solver.cpp:218] Iteration 5412 (1.20669 iter/s, 9.94456s/12 iters), loss = 0.886899
I0428 17:52:40.256222 8468 solver.cpp:237] Train net output #0: loss = 0.886899 (* 1 = 0.886899 loss)
I0428 17:52:40.256233 8468 sgd_solver.cpp:105] Iteration 5412, lr = 0.00342309
I0428 17:52:45.822803 8468 solver.cpp:218] Iteration 5424 (2.15581 iter/s, 5.56635s/12 iters), loss = 0.620767
I0428 17:52:45.822909 8468 solver.cpp:237] Train net output #0: loss = 0.620767 (* 1 = 0.620767 loss)
I0428 17:52:45.822919 8468 sgd_solver.cpp:105] Iteration 5424, lr = 0.00341497
I0428 17:52:51.203070 8468 solver.cpp:218] Iteration 5436 (2.23051 iter/s, 5.37993s/12 iters), loss = 0.692051
I0428 17:52:51.203112 8468 solver.cpp:237] Train net output #0: loss = 0.692051 (* 1 = 0.692051 loss)
I0428 17:52:51.203121 8468 sgd_solver.cpp:105] Iteration 5436, lr = 0.00340686
I0428 17:52:56.702859 8468 solver.cpp:218] Iteration 5448 (2.18201 iter/s, 5.49951s/12 iters), loss = 0.789411
I0428 17:52:56.702903 8468 solver.cpp:237] Train net output #0: loss = 0.789411 (* 1 = 0.789411 loss)
I0428 17:52:56.702914 8468 sgd_solver.cpp:105] Iteration 5448, lr = 0.00339877
I0428 17:53:02.180953 8468 solver.cpp:218] Iteration 5460 (2.19066 iter/s, 5.47781s/12 iters), loss = 0.576937
I0428 17:53:02.180994 8468 solver.cpp:237] Train net output #0: loss = 0.576937 (* 1 = 0.576937 loss)
I0428 17:53:02.181002 8468 sgd_solver.cpp:105] Iteration 5460, lr = 0.0033907
I0428 17:53:02.831326 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:53:07.653295 8468 solver.cpp:218] Iteration 5472 (2.19295 iter/s, 5.47207s/12 iters), loss = 0.642968
I0428 17:53:07.653331 8468 solver.cpp:237] Train net output #0: loss = 0.642968 (* 1 = 0.642968 loss)
I0428 17:53:07.653340 8468 sgd_solver.cpp:105] Iteration 5472, lr = 0.00338265
I0428 17:53:13.420943 8468 solver.cpp:218] Iteration 5484 (2.08068 iter/s, 5.76736s/12 iters), loss = 0.625096
I0428 17:53:13.421002 8468 solver.cpp:237] Train net output #0: loss = 0.625096 (* 1 = 0.625096 loss)
I0428 17:53:13.421022 8468 sgd_solver.cpp:105] Iteration 5484, lr = 0.00337462
I0428 17:53:19.112021 8468 solver.cpp:218] Iteration 5496 (2.10867 iter/s, 5.69078s/12 iters), loss = 0.716169
I0428 17:53:19.112155 8468 solver.cpp:237] Train net output #0: loss = 0.716169 (* 1 = 0.716169 loss)
I0428 17:53:19.112171 8468 sgd_solver.cpp:105] Iteration 5496, lr = 0.00336661
I0428 17:53:23.999975 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel
I0428 17:53:24.665741 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate
I0428 17:53:25.110208 8468 solver.cpp:330] Iteration 5508, Testing net (#0)
I0428 17:53:25.110227 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:53:27.405925 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:53:29.747085 8468 solver.cpp:397] Test net output #0: accuracy = 0.417892
I0428 17:53:29.747123 8468 solver.cpp:397] Test net output #1: loss = 3.05641 (* 1 = 3.05641 loss)
I0428 17:53:29.878520 8468 solver.cpp:218] Iteration 5508 (1.11463 iter/s, 10.7659s/12 iters), loss = 0.52864
I0428 17:53:29.878571 8468 solver.cpp:237] Train net output #0: loss = 0.52864 (* 1 = 0.52864 loss)
I0428 17:53:29.878585 8468 sgd_solver.cpp:105] Iteration 5508, lr = 0.00335861
I0428 17:53:34.492188 8468 solver.cpp:218] Iteration 5520 (2.60111 iter/s, 4.61341s/12 iters), loss = 0.644999
I0428 17:53:34.492235 8468 solver.cpp:237] Train net output #0: loss = 0.644999 (* 1 = 0.644999 loss)
I0428 17:53:34.492247 8468 sgd_solver.cpp:105] Iteration 5520, lr = 0.00335064
I0428 17:53:35.746039 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:53:40.032575 8468 solver.cpp:218] Iteration 5532 (2.16602 iter/s, 5.54011s/12 iters), loss = 0.53841
I0428 17:53:40.032618 8468 solver.cpp:237] Train net output #0: loss = 0.53841 (* 1 = 0.53841 loss)
I0428 17:53:40.032627 8468 sgd_solver.cpp:105] Iteration 5532, lr = 0.00334268
I0428 17:53:45.386929 8468 solver.cpp:218] Iteration 5544 (2.24128 iter/s, 5.35407s/12 iters), loss = 0.609924
I0428 17:53:45.386971 8468 solver.cpp:237] Train net output #0: loss = 0.609924 (* 1 = 0.609924 loss)
I0428 17:53:45.386981 8468 sgd_solver.cpp:105] Iteration 5544, lr = 0.00333475
I0428 17:53:50.926035 8468 solver.cpp:218] Iteration 5556 (2.16652 iter/s, 5.53882s/12 iters), loss = 0.444861
I0428 17:53:50.926170 8468 solver.cpp:237] Train net output #0: loss = 0.444861 (* 1 = 0.444861 loss)
I0428 17:53:50.926183 8468 sgd_solver.cpp:105] Iteration 5556, lr = 0.00332683
I0428 17:53:53.780762 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:53:56.406232 8468 solver.cpp:218] Iteration 5568 (2.18985 iter/s, 5.47983s/12 iters), loss = 0.55411
I0428 17:53:56.406276 8468 solver.cpp:237] Train net output #0: loss = 0.55411 (* 1 = 0.55411 loss)
I0428 17:53:56.406286 8468 sgd_solver.cpp:105] Iteration 5568, lr = 0.00331893
I0428 17:54:01.850782 8468 solver.cpp:218] Iteration 5580 (2.20415 iter/s, 5.44427s/12 iters), loss = 0.525508
I0428 17:54:01.850836 8468 solver.cpp:237] Train net output #0: loss = 0.525508 (* 1 = 0.525508 loss)
I0428 17:54:01.850852 8468 sgd_solver.cpp:105] Iteration 5580, lr = 0.00331105
I0428 17:54:07.374255 8468 solver.cpp:218] Iteration 5592 (2.17266 iter/s, 5.52319s/12 iters), loss = 0.673033
I0428 17:54:07.374294 8468 solver.cpp:237] Train net output #0: loss = 0.673033 (* 1 = 0.673033 loss)
I0428 17:54:07.374305 8468 sgd_solver.cpp:105] Iteration 5592, lr = 0.00330319
I0428 17:54:12.731369 8468 solver.cpp:218] Iteration 5604 (2.24013 iter/s, 5.35684s/12 iters), loss = 0.503431
I0428 17:54:12.731410 8468 solver.cpp:237] Train net output #0: loss = 0.503431 (* 1 = 0.503431 loss)
I0428 17:54:12.731420 8468 sgd_solver.cpp:105] Iteration 5604, lr = 0.00329535
I0428 17:54:14.973413 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel
I0428 17:54:17.792018 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate
I0428 17:54:18.676008 8468 solver.cpp:330] Iteration 5610, Testing net (#0)
I0428 17:54:18.676038 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:54:20.931241 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:54:23.347576 8468 solver.cpp:397] Test net output #0: accuracy = 0.387255
I0428 17:54:23.347611 8468 solver.cpp:397] Test net output #1: loss = 3.17157 (* 1 = 3.17157 loss)
I0428 17:54:25.335374 8468 solver.cpp:218] Iteration 5616 (0.952121 iter/s, 12.6034s/12 iters), loss = 0.613823
I0428 17:54:25.335417 8468 solver.cpp:237] Train net output #0: loss = 0.613823 (* 1 = 0.613823 loss)
I0428 17:54:25.335428 8468 sgd_solver.cpp:105] Iteration 5616, lr = 0.00328752
I0428 17:54:30.677120 8468 solver.cpp:218] Iteration 5628 (2.24657 iter/s, 5.34148s/12 iters), loss = 0.461659
I0428 17:54:30.677157 8468 solver.cpp:237] Train net output #0: loss = 0.461659 (* 1 = 0.461659 loss)
I0428 17:54:30.677167 8468 sgd_solver.cpp:105] Iteration 5628, lr = 0.00327972
I0428 17:54:36.057014 8468 solver.cpp:218] Iteration 5640 (2.23064 iter/s, 5.37963s/12 iters), loss = 0.644911
I0428 17:54:36.057052 8468 solver.cpp:237] Train net output #0: loss = 0.644911 (* 1 = 0.644911 loss)
I0428 17:54:36.057061 8468 sgd_solver.cpp:105] Iteration 5640, lr = 0.00327193
I0428 17:54:41.542610 8468 solver.cpp:218] Iteration 5652 (2.18766 iter/s, 5.48532s/12 iters), loss = 0.386837
I0428 17:54:41.542651 8468 solver.cpp:237] Train net output #0: loss = 0.386837 (* 1 = 0.386837 loss)
I0428 17:54:41.542661 8468 sgd_solver.cpp:105] Iteration 5652, lr = 0.00326416
I0428 17:54:46.844475 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:54:47.050290 8468 solver.cpp:218] Iteration 5664 (2.17888 iter/s, 5.50741s/12 iters), loss = 0.578293
I0428 17:54:47.050330 8468 solver.cpp:237] Train net output #0: loss = 0.578293 (* 1 = 0.578293 loss)
I0428 17:54:47.050339 8468 sgd_solver.cpp:105] Iteration 5664, lr = 0.00325641
I0428 17:54:52.496289 8468 solver.cpp:218] Iteration 5676 (2.20357 iter/s, 5.44572s/12 iters), loss = 0.520539
I0428 17:54:52.496423 8468 solver.cpp:237] Train net output #0: loss = 0.520539 (* 1 = 0.520539 loss)
I0428 17:54:52.496434 8468 sgd_solver.cpp:105] Iteration 5676, lr = 0.00324868
I0428 17:54:57.923890 8468 solver.cpp:218] Iteration 5688 (2.21107 iter/s, 5.42724s/12 iters), loss = 0.590221
I0428 17:54:57.923930 8468 solver.cpp:237] Train net output #0: loss = 0.590221 (* 1 = 0.590221 loss)
I0428 17:54:57.923939 8468 sgd_solver.cpp:105] Iteration 5688, lr = 0.00324097
I0428 17:55:03.319367 8468 solver.cpp:218] Iteration 5700 (2.2242 iter/s, 5.3952s/12 iters), loss = 0.691121
I0428 17:55:03.319419 8468 solver.cpp:237] Train net output #0: loss = 0.691121 (* 1 = 0.691121 loss)
I0428 17:55:03.319430 8468 sgd_solver.cpp:105] Iteration 5700, lr = 0.00323328
I0428 17:55:08.158268 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel
I0428 17:55:08.783246 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate
I0428 17:55:09.212707 8468 solver.cpp:330] Iteration 5712, Testing net (#0)
I0428 17:55:09.212724 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:55:11.452787 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:55:13.951041 8468 solver.cpp:397] Test net output #0: accuracy = 0.389706
I0428 17:55:13.951081 8468 solver.cpp:397] Test net output #1: loss = 3.25837 (* 1 = 3.25837 loss)
I0428 17:55:14.080633 8468 solver.cpp:218] Iteration 5712 (1.11516 iter/s, 10.7608s/12 iters), loss = 0.513439
I0428 17:55:14.080682 8468 solver.cpp:237] Train net output #0: loss = 0.513439 (* 1 = 0.513439 loss)
I0428 17:55:14.080695 8468 sgd_solver.cpp:105] Iteration 5712, lr = 0.0032256
I0428 17:55:18.716676 8468 solver.cpp:218] Iteration 5724 (2.58856 iter/s, 4.63579s/12 iters), loss = 0.655048
I0428 17:55:18.716732 8468 solver.cpp:237] Train net output #0: loss = 0.655048 (* 1 = 0.655048 loss)
I0428 17:55:18.716744 8468 sgd_solver.cpp:105] Iteration 5724, lr = 0.00321794
I0428 17:55:24.078817 8468 solver.cpp:218] Iteration 5736 (2.23803 iter/s, 5.36185s/12 iters), loss = 0.573068
I0428 17:55:24.078976 8468 solver.cpp:237] Train net output #0: loss = 0.573068 (* 1 = 0.573068 loss)
I0428 17:55:24.078989 8468 sgd_solver.cpp:105] Iteration 5736, lr = 0.0032103
I0428 17:55:29.585952 8468 solver.cpp:218] Iteration 5748 (2.17915 iter/s, 5.50674s/12 iters), loss = 0.567456
I0428 17:55:29.586004 8468 solver.cpp:237] Train net output #0: loss = 0.567456 (* 1 = 0.567456 loss)
I0428 17:55:29.586015 8468 sgd_solver.cpp:105] Iteration 5748, lr = 0.00320268
I0428 17:55:35.144524 8468 solver.cpp:218] Iteration 5760 (2.15895 iter/s, 5.55826s/12 iters), loss = 0.50568
I0428 17:55:35.144564 8468 solver.cpp:237] Train net output #0: loss = 0.50568 (* 1 = 0.50568 loss)
I0428 17:55:35.144573 8468 sgd_solver.cpp:105] Iteration 5760, lr = 0.00319508
I0428 17:55:37.281088 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:55:40.582506 8468 solver.cpp:218] Iteration 5772 (2.20681 iter/s, 5.43771s/12 iters), loss = 0.49446
I0428 17:55:40.582558 8468 solver.cpp:237] Train net output #0: loss = 0.49446 (* 1 = 0.49446 loss)
I0428 17:55:40.582572 8468 sgd_solver.cpp:105] Iteration 5772, lr = 0.00318749
I0428 17:55:46.045024 8468 solver.cpp:218] Iteration 5784 (2.1969 iter/s, 5.46224s/12 iters), loss = 0.588894
I0428 17:55:46.045060 8468 solver.cpp:237] Train net output #0: loss = 0.588894 (* 1 = 0.588894 loss)
I0428 17:55:46.045070 8468 sgd_solver.cpp:105] Iteration 5784, lr = 0.00317992
I0428 17:55:51.519230 8468 solver.cpp:218] Iteration 5796 (2.19221 iter/s, 5.47393s/12 iters), loss = 0.394999
I0428 17:55:51.519271 8468 solver.cpp:237] Train net output #0: loss = 0.394999 (* 1 = 0.394999 loss)
I0428 17:55:51.519282 8468 sgd_solver.cpp:105] Iteration 5796, lr = 0.00317237
I0428 17:55:56.970468 8468 solver.cpp:218] Iteration 5808 (2.20144 iter/s, 5.45097s/12 iters), loss = 0.506208
I0428 17:55:56.970566 8468 solver.cpp:237] Train net output #0: loss = 0.506208 (* 1 = 0.506208 loss)
I0428 17:55:56.970575 8468 sgd_solver.cpp:105] Iteration 5808, lr = 0.00316484
I0428 17:55:59.129446 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel
I0428 17:55:59.862511 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate
I0428 17:56:00.308890 8468 solver.cpp:330] Iteration 5814, Testing net (#0)
I0428 17:56:00.308909 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:56:02.656723 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:56:05.226509 8468 solver.cpp:397] Test net output #0: accuracy = 0.39951
I0428 17:56:05.226537 8468 solver.cpp:397] Test net output #1: loss = 3.30419 (* 1 = 3.30419 loss)
I0428 17:56:07.257341 8468 solver.cpp:218] Iteration 5820 (1.16659 iter/s, 10.2864s/12 iters), loss = 0.515416
I0428 17:56:07.257385 8468 solver.cpp:237] Train net output #0: loss = 0.515416 (* 1 = 0.515416 loss)
I0428 17:56:07.257395 8468 sgd_solver.cpp:105] Iteration 5820, lr = 0.00315733
I0428 17:56:12.678334 8468 solver.cpp:218] Iteration 5832 (2.21373 iter/s, 5.42071s/12 iters), loss = 0.42016
I0428 17:56:12.678375 8468 solver.cpp:237] Train net output #0: loss = 0.42016 (* 1 = 0.42016 loss)
I0428 17:56:12.678385 8468 sgd_solver.cpp:105] Iteration 5832, lr = 0.00314983
I0428 17:56:18.022958 8468 solver.cpp:218] Iteration 5844 (2.24536 iter/s, 5.34434s/12 iters), loss = 0.623039
I0428 17:56:18.023010 8468 solver.cpp:237] Train net output #0: loss = 0.623039 (* 1 = 0.623039 loss)
I0428 17:56:18.023025 8468 sgd_solver.cpp:105] Iteration 5844, lr = 0.00314235
I0428 17:56:23.401531 8468 solver.cpp:218] Iteration 5856 (2.23119 iter/s, 5.37829s/12 iters), loss = 0.67557
I0428 17:56:23.401573 8468 solver.cpp:237] Train net output #0: loss = 0.67557 (* 1 = 0.67557 loss)
I0428 17:56:23.401583 8468 sgd_solver.cpp:105] Iteration 5856, lr = 0.00313489
I0428 17:56:27.920604 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:56:28.801383 8468 solver.cpp:218] Iteration 5868 (2.2224 iter/s, 5.39958s/12 iters), loss = 0.590324
I0428 17:56:28.801421 8468 solver.cpp:237] Train net output #0: loss = 0.590324 (* 1 = 0.590324 loss)
I0428 17:56:28.801430 8468 sgd_solver.cpp:105] Iteration 5868, lr = 0.00312745
I0428 17:56:34.313647 8468 solver.cpp:218] Iteration 5880 (2.17707 iter/s, 5.51199s/12 iters), loss = 0.681813
I0428 17:56:34.313704 8468 solver.cpp:237] Train net output #0: loss = 0.681813 (* 1 = 0.681813 loss)
I0428 17:56:34.313716 8468 sgd_solver.cpp:105] Iteration 5880, lr = 0.00312002
I0428 17:56:39.643983 8468 solver.cpp:218] Iteration 5892 (2.25139 iter/s, 5.33005s/12 iters), loss = 0.442712
I0428 17:56:39.644038 8468 solver.cpp:237] Train net output #0: loss = 0.442712 (* 1 = 0.442712 loss)
I0428 17:56:39.644052 8468 sgd_solver.cpp:105] Iteration 5892, lr = 0.00311262
I0428 17:56:44.940188 8468 solver.cpp:218] Iteration 5904 (2.26589 iter/s, 5.29592s/12 iters), loss = 0.665911
I0428 17:56:44.940229 8468 solver.cpp:237] Train net output #0: loss = 0.665911 (* 1 = 0.665911 loss)
I0428 17:56:44.940241 8468 sgd_solver.cpp:105] Iteration 5904, lr = 0.00310523
I0428 17:56:49.900820 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel
I0428 17:56:51.057286 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate
I0428 17:56:51.777820 8468 solver.cpp:330] Iteration 5916, Testing net (#0)
I0428 17:56:51.777839 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:56:53.913018 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:56:56.401685 8468 solver.cpp:397] Test net output #0: accuracy = 0.409314
I0428 17:56:56.401715 8468 solver.cpp:397] Test net output #1: loss = 3.49379 (* 1 = 3.49379 loss)
I0428 17:56:56.530709 8468 solver.cpp:218] Iteration 5916 (1.03538 iter/s, 11.59s/12 iters), loss = 0.421307
I0428 17:56:56.530755 8468 solver.cpp:237] Train net output #0: loss = 0.421307 (* 1 = 0.421307 loss)
I0428 17:56:56.530766 8468 sgd_solver.cpp:105] Iteration 5916, lr = 0.00309785
I0428 17:57:01.137166 8468 solver.cpp:218] Iteration 5928 (2.60518 iter/s, 4.6062s/12 iters), loss = 0.56133
I0428 17:57:01.137295 8468 solver.cpp:237] Train net output #0: loss = 0.56133 (* 1 = 0.56133 loss)
I0428 17:57:01.137308 8468 sgd_solver.cpp:105] Iteration 5928, lr = 0.0030905
I0428 17:57:06.470039 8468 solver.cpp:218] Iteration 5940 (2.25034 iter/s, 5.33252s/12 iters), loss = 0.61535
I0428 17:57:06.470095 8468 solver.cpp:237] Train net output #0: loss = 0.61535 (* 1 = 0.61535 loss)
I0428 17:57:06.470111 8468 sgd_solver.cpp:105] Iteration 5940, lr = 0.00308316
I0428 17:57:11.959597 8468 solver.cpp:218] Iteration 5952 (2.18608 iter/s, 5.48927s/12 iters), loss = 0.579
I0428 17:57:11.959653 8468 solver.cpp:237] Train net output #0: loss = 0.579 (* 1 = 0.579 loss)
I0428 17:57:11.959667 8468 sgd_solver.cpp:105] Iteration 5952, lr = 0.00307584
I0428 17:57:17.569310 8468 solver.cpp:218] Iteration 5964 (2.13926 iter/s, 5.60942s/12 iters), loss = 0.402545
I0428 17:57:17.569360 8468 solver.cpp:237] Train net output #0: loss = 0.402545 (* 1 = 0.402545 loss)
I0428 17:57:17.569373 8468 sgd_solver.cpp:105] Iteration 5964, lr = 0.00306854
I0428 17:57:18.999756 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:57:22.914113 8468 solver.cpp:218] Iteration 5976 (2.24529 iter/s, 5.34452s/12 iters), loss = 0.478818
I0428 17:57:22.914153 8468 solver.cpp:237] Train net output #0: loss = 0.478818 (* 1 = 0.478818 loss)
I0428 17:57:22.914165 8468 sgd_solver.cpp:105] Iteration 5976, lr = 0.00306125
I0428 17:57:28.422359 8468 solver.cpp:218] Iteration 5988 (2.17866 iter/s, 5.50797s/12 iters), loss = 0.554464
I0428 17:57:28.422415 8468 solver.cpp:237] Train net output #0: loss = 0.554464 (* 1 = 0.554464 loss)
I0428 17:57:28.422427 8468 sgd_solver.cpp:105] Iteration 5988, lr = 0.00305398
I0428 17:57:33.778576 8468 solver.cpp:218] Iteration 6000 (2.2405 iter/s, 5.35594s/12 iters), loss = 0.462563
I0428 17:57:33.778714 8468 solver.cpp:237] Train net output #0: loss = 0.462563 (* 1 = 0.462563 loss)
I0428 17:57:33.778726 8468 sgd_solver.cpp:105] Iteration 6000, lr = 0.00304673
I0428 17:57:39.145411 8468 solver.cpp:218] Iteration 6012 (2.23611 iter/s, 5.36647s/12 iters), loss = 0.498612
I0428 17:57:39.145452 8468 solver.cpp:237] Train net output #0: loss = 0.498612 (* 1 = 0.498612 loss)
I0428 17:57:39.145464 8468 sgd_solver.cpp:105] Iteration 6012, lr = 0.0030395
I0428 17:57:41.346701 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel
I0428 17:57:41.987757 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate
I0428 17:57:42.440229 8468 solver.cpp:330] Iteration 6018, Testing net (#0)
I0428 17:57:42.440251 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:57:44.474833 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:57:47.191788 8468 solver.cpp:397] Test net output #0: accuracy = 0.416667
I0428 17:57:47.191833 8468 solver.cpp:397] Test net output #1: loss = 3.26315 (* 1 = 3.26315 loss)
I0428 17:57:49.151262 8468 solver.cpp:218] Iteration 6024 (1.19935 iter/s, 10.0054s/12 iters), loss = 0.534377
I0428 17:57:49.151301 8468 solver.cpp:237] Train net output #0: loss = 0.534377 (* 1 = 0.534377 loss)
I0428 17:57:49.151310 8468 sgd_solver.cpp:105] Iteration 6024, lr = 0.00303228
I0428 17:57:54.597756 8468 solver.cpp:218] Iteration 6036 (2.20336 iter/s, 5.44622s/12 iters), loss = 0.319217
I0428 17:57:54.597797 8468 solver.cpp:237] Train net output #0: loss = 0.319217 (* 1 = 0.319217 loss)
I0428 17:57:54.597805 8468 sgd_solver.cpp:105] Iteration 6036, lr = 0.00302508
I0428 17:58:00.114821 8468 solver.cpp:218] Iteration 6048 (2.17518 iter/s, 5.51678s/12 iters), loss = 0.441278
I0428 17:58:00.114873 8468 solver.cpp:237] Train net output #0: loss = 0.441278 (* 1 = 0.441278 loss)
I0428 17:58:00.114886 8468 sgd_solver.cpp:105] Iteration 6048, lr = 0.0030179
I0428 17:58:05.703646 8468 solver.cpp:218] Iteration 6060 (2.14725 iter/s, 5.58853s/12 iters), loss = 0.423046
I0428 17:58:05.703792 8468 solver.cpp:237] Train net output #0: loss = 0.423046 (* 1 = 0.423046 loss)
I0428 17:58:05.703805 8468 sgd_solver.cpp:105] Iteration 6060, lr = 0.00301074
I0428 17:58:09.379133 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:58:11.094300 8468 solver.cpp:218] Iteration 6072 (2.22623 iter/s, 5.39028s/12 iters), loss = 0.274081
I0428 17:58:11.094341 8468 solver.cpp:237] Train net output #0: loss = 0.274081 (* 1 = 0.274081 loss)
I0428 17:58:11.094350 8468 sgd_solver.cpp:105] Iteration 6072, lr = 0.00300359
I0428 17:58:16.612030 8468 solver.cpp:218] Iteration 6084 (2.17492 iter/s, 5.51745s/12 iters), loss = 0.371653
I0428 17:58:16.612069 8468 solver.cpp:237] Train net output #0: loss = 0.371653 (* 1 = 0.371653 loss)
I0428 17:58:16.612078 8468 sgd_solver.cpp:105] Iteration 6084, lr = 0.00299646
I0428 17:58:22.241174 8468 solver.cpp:218] Iteration 6096 (2.13187 iter/s, 5.62887s/12 iters), loss = 0.729148
I0428 17:58:22.241210 8468 solver.cpp:237] Train net output #0: loss = 0.729148 (* 1 = 0.729148 loss)
I0428 17:58:22.241221 8468 sgd_solver.cpp:105] Iteration 6096, lr = 0.00298934
I0428 17:58:27.673553 8468 solver.cpp:218] Iteration 6108 (2.20909 iter/s, 5.43211s/12 iters), loss = 0.365232
I0428 17:58:27.673593 8468 solver.cpp:237] Train net output #0: loss = 0.365232 (* 1 = 0.365232 loss)
I0428 17:58:27.673604 8468 sgd_solver.cpp:105] Iteration 6108, lr = 0.00298225
I0428 17:58:32.689214 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel
I0428 17:58:34.016342 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate
I0428 17:58:34.862221 8468 solver.cpp:330] Iteration 6120, Testing net (#0)
I0428 17:58:34.862246 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:58:36.897593 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:58:39.426085 8468 solver.cpp:397] Test net output #0: accuracy = 0.416667
I0428 17:58:39.426123 8468 solver.cpp:397] Test net output #1: loss = 3.37304 (* 1 = 3.37304 loss)
I0428 17:58:39.557122 8468 solver.cpp:218] Iteration 6120 (1.00984 iter/s, 11.883s/12 iters), loss = 0.471288
I0428 17:58:39.557163 8468 solver.cpp:237] Train net output #0: loss = 0.471288 (* 1 = 0.471288 loss)
I0428 17:58:39.557176 8468 sgd_solver.cpp:105] Iteration 6120, lr = 0.00297517
I0428 17:58:44.051232 8468 solver.cpp:218] Iteration 6132 (2.6703 iter/s, 4.49387s/12 iters), loss = 0.56074
I0428 17:58:44.051270 8468 solver.cpp:237] Train net output #0: loss = 0.56074 (* 1 = 0.56074 loss)
I0428 17:58:44.051280 8468 sgd_solver.cpp:105] Iteration 6132, lr = 0.0029681
I0428 17:58:49.609869 8468 solver.cpp:218] Iteration 6144 (2.15891 iter/s, 5.55836s/12 iters), loss = 0.409664
I0428 17:58:49.609912 8468 solver.cpp:237] Train net output #0: loss = 0.409664 (* 1 = 0.409664 loss)
I0428 17:58:49.609922 8468 sgd_solver.cpp:105] Iteration 6144, lr = 0.00296105
I0428 17:58:55.140929 8468 solver.cpp:218] Iteration 6156 (2.16968 iter/s, 5.53078s/12 iters), loss = 0.621763
I0428 17:58:55.140980 8468 solver.cpp:237] Train net output #0: loss = 0.621763 (* 1 = 0.621763 loss)
I0428 17:58:55.140991 8468 sgd_solver.cpp:105] Iteration 6156, lr = 0.00295402
I0428 17:59:00.714342 8468 solver.cpp:218] Iteration 6168 (2.15319 iter/s, 5.57312s/12 iters), loss = 0.430858
I0428 17:59:00.714382 8468 solver.cpp:237] Train net output #0: loss = 0.430858 (* 1 = 0.430858 loss)
I0428 17:59:00.714394 8468 sgd_solver.cpp:105] Iteration 6168, lr = 0.00294701
I0428 17:59:01.330616 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:59:06.055285 8468 solver.cpp:218] Iteration 6180 (2.24691 iter/s, 5.34067s/12 iters), loss = 0.348172
I0428 17:59:06.055326 8468 solver.cpp:237] Train net output #0: loss = 0.348172 (* 1 = 0.348172 loss)
I0428 17:59:06.055335 8468 sgd_solver.cpp:105] Iteration 6180, lr = 0.00294001
I0428 17:59:11.546700 8468 solver.cpp:218] Iteration 6192 (2.18534 iter/s, 5.49114s/12 iters), loss = 0.388067
I0428 17:59:11.546800 8468 solver.cpp:237] Train net output #0: loss = 0.388067 (* 1 = 0.388067 loss)
I0428 17:59:11.546809 8468 sgd_solver.cpp:105] Iteration 6192, lr = 0.00293303
I0428 17:59:16.886446 8468 solver.cpp:218] Iteration 6204 (2.24744 iter/s, 5.33942s/12 iters), loss = 0.365513
I0428 17:59:16.886487 8468 solver.cpp:237] Train net output #0: loss = 0.365513 (* 1 = 0.365513 loss)
I0428 17:59:16.886497 8468 sgd_solver.cpp:105] Iteration 6204, lr = 0.00292607
I0428 17:59:22.555817 8468 solver.cpp:218] Iteration 6216 (2.11674 iter/s, 5.66909s/12 iters), loss = 0.530317
I0428 17:59:22.555860 8468 solver.cpp:237] Train net output #0: loss = 0.530317 (* 1 = 0.530317 loss)
I0428 17:59:22.555869 8468 sgd_solver.cpp:105] Iteration 6216, lr = 0.00291912
I0428 17:59:24.699527 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel
I0428 17:59:25.283262 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate
I0428 17:59:26.527720 8468 solver.cpp:330] Iteration 6222, Testing net (#0)
I0428 17:59:26.527746 8468 net.cpp:676] Ignoring source layer train-data
I0428 17:59:28.496395 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:59:29.547951 8468 blocking_queue.cpp:49] Waiting for data
I0428 17:59:31.053025 8468 solver.cpp:397] Test net output #0: accuracy = 0.395221
I0428 17:59:31.053064 8468 solver.cpp:397] Test net output #1: loss = 3.31952 (* 1 = 3.31952 loss)
I0428 17:59:33.070401 8468 solver.cpp:218] Iteration 6228 (1.14132 iter/s, 10.5141s/12 iters), loss = 0.473763
I0428 17:59:33.070441 8468 solver.cpp:237] Train net output #0: loss = 0.473763 (* 1 = 0.473763 loss)
I0428 17:59:33.070449 8468 sgd_solver.cpp:105] Iteration 6228, lr = 0.00291219
I0428 17:59:38.430588 8468 solver.cpp:218] Iteration 6240 (2.23884 iter/s, 5.35992s/12 iters), loss = 0.370887
I0428 17:59:38.430627 8468 solver.cpp:237] Train net output #0: loss = 0.370887 (* 1 = 0.370887 loss)
I0428 17:59:38.430639 8468 sgd_solver.cpp:105] Iteration 6240, lr = 0.00290528
I0428 17:59:43.757556 8468 solver.cpp:218] Iteration 6252 (2.2528 iter/s, 5.3267s/12 iters), loss = 0.354213
I0428 17:59:43.757797 8468 solver.cpp:237] Train net output #0: loss = 0.354213 (* 1 = 0.354213 loss)
I0428 17:59:43.757805 8468 sgd_solver.cpp:105] Iteration 6252, lr = 0.00289838
I0428 17:59:49.123086 8468 solver.cpp:218] Iteration 6264 (2.2367 iter/s, 5.36506s/12 iters), loss = 0.322013
I0428 17:59:49.123138 8468 solver.cpp:237] Train net output #0: loss = 0.322013 (* 1 = 0.322013 loss)
I0428 17:59:49.123149 8468 sgd_solver.cpp:105] Iteration 6264, lr = 0.0028915
I0428 17:59:52.021359 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 17:59:54.537379 8468 solver.cpp:218] Iteration 6276 (2.21647 iter/s, 5.41401s/12 iters), loss = 0.417642
I0428 17:59:54.537434 8468 solver.cpp:237] Train net output #0: loss = 0.417642 (* 1 = 0.417642 loss)
I0428 17:59:54.537448 8468 sgd_solver.cpp:105] Iteration 6276, lr = 0.00288463
I0428 18:00:00.005970 8468 solver.cpp:218] Iteration 6288 (2.19446 iter/s, 5.4683s/12 iters), loss = 0.686677
I0428 18:00:00.006012 8468 solver.cpp:237] Train net output #0: loss = 0.686677 (* 1 = 0.686677 loss)
I0428 18:00:00.006022 8468 sgd_solver.cpp:105] Iteration 6288, lr = 0.00287779
I0428 18:00:05.651352 8468 solver.cpp:218] Iteration 6300 (2.12574 iter/s, 5.6451s/12 iters), loss = 0.370543
I0428 18:00:05.651398 8468 solver.cpp:237] Train net output #0: loss = 0.370543 (* 1 = 0.370543 loss)
I0428 18:00:05.651410 8468 sgd_solver.cpp:105] Iteration 6300, lr = 0.00287095
I0428 18:00:11.085391 8468 solver.cpp:218] Iteration 6312 (2.20841 iter/s, 5.43377s/12 iters), loss = 0.373402
I0428 18:00:11.085427 8468 solver.cpp:237] Train net output #0: loss = 0.373402 (* 1 = 0.373402 loss)
I0428 18:00:11.085438 8468 sgd_solver.cpp:105] Iteration 6312, lr = 0.00286414
I0428 18:00:15.898301 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel
I0428 18:00:17.129936 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate
I0428 18:00:17.802256 8468 solver.cpp:330] Iteration 6324, Testing net (#0)
I0428 18:00:17.802275 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:00:19.773798 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:00:22.674116 8468 solver.cpp:397] Test net output #0: accuracy = 0.40625
I0428 18:00:22.674157 8468 solver.cpp:397] Test net output #1: loss = 3.38831 (* 1 = 3.38831 loss)
I0428 18:00:22.805194 8468 solver.cpp:218] Iteration 6324 (1.02395 iter/s, 11.7193s/12 iters), loss = 0.476372
I0428 18:00:22.805235 8468 solver.cpp:237] Train net output #0: loss = 0.476372 (* 1 = 0.476372 loss)
I0428 18:00:22.805244 8468 sgd_solver.cpp:105] Iteration 6324, lr = 0.00285734
I0428 18:00:27.245326 8468 solver.cpp:218] Iteration 6336 (2.70276 iter/s, 4.4399s/12 iters), loss = 0.448321
I0428 18:00:27.245366 8468 solver.cpp:237] Train net output #0: loss = 0.448321 (* 1 = 0.448321 loss)
I0428 18:00:27.245378 8468 sgd_solver.cpp:105] Iteration 6336, lr = 0.00285055
I0428 18:00:32.819197 8468 solver.cpp:218] Iteration 6348 (2.15301 iter/s, 5.57359s/12 iters), loss = 0.350176
I0428 18:00:32.819237 8468 solver.cpp:237] Train net output #0: loss = 0.350176 (* 1 = 0.350176 loss)
I0428 18:00:32.819248 8468 sgd_solver.cpp:105] Iteration 6348, lr = 0.00284379
I0428 18:00:38.265972 8468 solver.cpp:218] Iteration 6360 (2.20325 iter/s, 5.4465s/12 iters), loss = 0.435244
I0428 18:00:38.266014 8468 solver.cpp:237] Train net output #0: loss = 0.435244 (* 1 = 0.435244 loss)
I0428 18:00:38.266024 8468 sgd_solver.cpp:105] Iteration 6360, lr = 0.00283703
I0428 18:00:43.451735 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:00:43.629346 8468 solver.cpp:218] Iteration 6372 (2.23751 iter/s, 5.3631s/12 iters), loss = 0.334895
I0428 18:00:43.629388 8468 solver.cpp:237] Train net output #0: loss = 0.334895 (* 1 = 0.334895 loss)
I0428 18:00:43.629397 8468 sgd_solver.cpp:105] Iteration 6372, lr = 0.0028303
I0428 18:00:49.072057 8468 solver.cpp:218] Iteration 6384 (2.2049 iter/s, 5.44244s/12 iters), loss = 0.231009
I0428 18:00:49.072193 8468 solver.cpp:237] Train net output #0: loss = 0.231009 (* 1 = 0.231009 loss)
I0428 18:00:49.072204 8468 sgd_solver.cpp:105] Iteration 6384, lr = 0.00282358
I0428 18:00:54.715829 8468 solver.cpp:218] Iteration 6396 (2.12638 iter/s, 5.6434s/12 iters), loss = 0.523784
I0428 18:00:54.715870 8468 solver.cpp:237] Train net output #0: loss = 0.523784 (* 1 = 0.523784 loss)
I0428 18:00:54.715878 8468 sgd_solver.cpp:105] Iteration 6396, lr = 0.00281687
I0428 18:01:00.153643 8468 solver.cpp:218] Iteration 6408 (2.20688 iter/s, 5.43753s/12 iters), loss = 0.353541
I0428 18:01:00.153698 8468 solver.cpp:237] Train net output #0: loss = 0.353541 (* 1 = 0.353541 loss)
I0428 18:01:00.153714 8468 sgd_solver.cpp:105] Iteration 6408, lr = 0.00281019
I0428 18:01:05.704162 8468 solver.cpp:218] Iteration 6420 (2.16207 iter/s, 5.55023s/12 iters), loss = 0.339242
I0428 18:01:05.704216 8468 solver.cpp:237] Train net output #0: loss = 0.339242 (* 1 = 0.339242 loss)
I0428 18:01:05.704226 8468 sgd_solver.cpp:105] Iteration 6420, lr = 0.00280351
I0428 18:01:07.859328 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel
I0428 18:01:09.073916 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate
I0428 18:01:09.912626 8468 solver.cpp:330] Iteration 6426, Testing net (#0)
I0428 18:01:09.912649 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:01:11.808708 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:01:14.577039 8468 solver.cpp:397] Test net output #0: accuracy = 0.405024
I0428 18:01:14.577069 8468 solver.cpp:397] Test net output #1: loss = 3.54951 (* 1 = 3.54951 loss)
I0428 18:01:16.603688 8468 solver.cpp:218] Iteration 6432 (1.10102 iter/s, 10.899s/12 iters), loss = 0.343749
I0428 18:01:16.603729 8468 solver.cpp:237] Train net output #0: loss = 0.343749 (* 1 = 0.343749 loss)
I0428 18:01:16.603737 8468 sgd_solver.cpp:105] Iteration 6432, lr = 0.00279686
I0428 18:01:22.182564 8468 solver.cpp:218] Iteration 6444 (2.15108 iter/s, 5.5786s/12 iters), loss = 0.441936
I0428 18:01:22.182662 8468 solver.cpp:237] Train net output #0: loss = 0.441936 (* 1 = 0.441936 loss)
I0428 18:01:22.182673 8468 sgd_solver.cpp:105] Iteration 6444, lr = 0.00279022
I0428 18:01:27.538611 8468 solver.cpp:218] Iteration 6456 (2.2406 iter/s, 5.35572s/12 iters), loss = 0.333443
I0428 18:01:27.538650 8468 solver.cpp:237] Train net output #0: loss = 0.333443 (* 1 = 0.333443 loss)
I0428 18:01:27.538661 8468 sgd_solver.cpp:105] Iteration 6456, lr = 0.00278359
I0428 18:01:32.960403 8468 solver.cpp:218] Iteration 6468 (2.2134 iter/s, 5.42152s/12 iters), loss = 0.355073
I0428 18:01:32.960469 8468 solver.cpp:237] Train net output #0: loss = 0.355073 (* 1 = 0.355073 loss)
I0428 18:01:32.960482 8468 sgd_solver.cpp:105] Iteration 6468, lr = 0.00277698
I0428 18:01:35.043114 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:01:38.338176 8468 solver.cpp:218] Iteration 6480 (2.23153 iter/s, 5.37748s/12 iters), loss = 0.31271
I0428 18:01:38.338229 8468 solver.cpp:237] Train net output #0: loss = 0.31271 (* 1 = 0.31271 loss)
I0428 18:01:38.338244 8468 sgd_solver.cpp:105] Iteration 6480, lr = 0.00277039
I0428 18:01:43.827257 8468 solver.cpp:218] Iteration 6492 (2.18627 iter/s, 5.48879s/12 iters), loss = 0.401695
I0428 18:01:43.827298 8468 solver.cpp:237] Train net output #0: loss = 0.401695 (* 1 = 0.401695 loss)
I0428 18:01:43.827309 8468 sgd_solver.cpp:105] Iteration 6492, lr = 0.00276381
I0428 18:01:49.301824 8468 solver.cpp:218] Iteration 6504 (2.19206 iter/s, 5.47429s/12 iters), loss = 0.510296
I0428 18:01:49.301863 8468 solver.cpp:237] Train net output #0: loss = 0.510296 (* 1 = 0.510296 loss)
I0428 18:01:49.301872 8468 sgd_solver.cpp:105] Iteration 6504, lr = 0.00275725
I0428 18:01:54.889086 8468 solver.cpp:218] Iteration 6516 (2.14785 iter/s, 5.58698s/12 iters), loss = 0.590555
I0428 18:01:54.889259 8468 solver.cpp:237] Train net output #0: loss = 0.590555 (* 1 = 0.590555 loss)
I0428 18:01:54.889272 8468 sgd_solver.cpp:105] Iteration 6516, lr = 0.00275071
I0428 18:01:59.766480 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel
I0428 18:02:01.600009 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate
I0428 18:02:02.023118 8468 solver.cpp:330] Iteration 6528, Testing net (#0)
I0428 18:02:02.023142 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:02:04.074364 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:02:06.924988 8468 solver.cpp:397] Test net output #0: accuracy = 0.400123
I0428 18:02:06.925030 8468 solver.cpp:397] Test net output #1: loss = 3.42828 (* 1 = 3.42828 loss)
I0428 18:02:07.055680 8468 solver.cpp:218] Iteration 6528 (0.986362 iter/s, 12.1659s/12 iters), loss = 0.40532
I0428 18:02:07.055732 8468 solver.cpp:237] Train net output #0: loss = 0.40532 (* 1 = 0.40532 loss)
I0428 18:02:07.055744 8468 sgd_solver.cpp:105] Iteration 6528, lr = 0.00274418
I0428 18:02:11.587195 8468 solver.cpp:218] Iteration 6540 (2.64826 iter/s, 4.53127s/12 iters), loss = 0.369416
I0428 18:02:11.587236 8468 solver.cpp:237] Train net output #0: loss = 0.369416 (* 1 = 0.369416 loss)
I0428 18:02:11.587245 8468 sgd_solver.cpp:105] Iteration 6540, lr = 0.00273766
I0428 18:02:17.044008 8468 solver.cpp:218] Iteration 6552 (2.1992 iter/s, 5.45653s/12 iters), loss = 0.370828
I0428 18:02:17.044059 8468 solver.cpp:237] Train net output #0: loss = 0.370828 (* 1 = 0.370828 loss)
I0428 18:02:17.044070 8468 sgd_solver.cpp:105] Iteration 6552, lr = 0.00273116
I0428 18:02:22.510870 8468 solver.cpp:218] Iteration 6564 (2.19516 iter/s, 5.46658s/12 iters), loss = 0.322033
I0428 18:02:22.510915 8468 solver.cpp:237] Train net output #0: loss = 0.322033 (* 1 = 0.322033 loss)
I0428 18:02:22.510923 8468 sgd_solver.cpp:105] Iteration 6564, lr = 0.00272468
I0428 18:02:27.056689 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:02:27.945881 8468 solver.cpp:218] Iteration 6576 (2.20802 iter/s, 5.43474s/12 iters), loss = 0.29083
I0428 18:02:27.945919 8468 solver.cpp:237] Train net output #0: loss = 0.29083 (* 1 = 0.29083 loss)
I0428 18:02:27.945930 8468 sgd_solver.cpp:105] Iteration 6576, lr = 0.00271821
I0428 18:02:33.433441 8468 solver.cpp:218] Iteration 6588 (2.18687 iter/s, 5.48728s/12 iters), loss = 0.544462
I0428 18:02:33.433481 8468 solver.cpp:237] Train net output #0: loss = 0.544462 (* 1 = 0.544462 loss)
I0428 18:02:33.433491 8468 sgd_solver.cpp:105] Iteration 6588, lr = 0.00271175
I0428 18:02:38.934876 8468 solver.cpp:218] Iteration 6600 (2.18136 iter/s, 5.50115s/12 iters), loss = 0.372928
I0428 18:02:38.934928 8468 solver.cpp:237] Train net output #0: loss = 0.372928 (* 1 = 0.372928 loss)
I0428 18:02:38.934942 8468 sgd_solver.cpp:105] Iteration 6600, lr = 0.00270532
I0428 18:02:44.586405 8468 solver.cpp:218] Iteration 6612 (2.12343 iter/s, 5.65124s/12 iters), loss = 0.387212
I0428 18:02:44.586448 8468 solver.cpp:237] Train net output #0: loss = 0.387212 (* 1 = 0.387212 loss)
I0428 18:02:44.586459 8468 sgd_solver.cpp:105] Iteration 6612, lr = 0.00269889
I0428 18:02:50.008431 8468 solver.cpp:218] Iteration 6624 (2.21331 iter/s, 5.42174s/12 iters), loss = 0.430999
I0428 18:02:50.008522 8468 solver.cpp:237] Train net output #0: loss = 0.430999 (* 1 = 0.430999 loss)
I0428 18:02:50.008536 8468 sgd_solver.cpp:105] Iteration 6624, lr = 0.00269248
I0428 18:02:52.193243 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel
I0428 18:02:54.605149 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate
I0428 18:02:56.830296 8468 solver.cpp:330] Iteration 6630, Testing net (#0)
I0428 18:02:56.830314 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:02:58.750672 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:03:01.530194 8468 solver.cpp:397] Test net output #0: accuracy = 0.42402
I0428 18:03:01.530231 8468 solver.cpp:397] Test net output #1: loss = 3.48907 (* 1 = 3.48907 loss)
I0428 18:03:03.500458 8468 solver.cpp:218] Iteration 6636 (0.889455 iter/s, 13.4914s/12 iters), loss = 0.308763
I0428 18:03:03.500537 8468 solver.cpp:237] Train net output #0: loss = 0.308763 (* 1 = 0.308763 loss)
I0428 18:03:03.500550 8468 sgd_solver.cpp:105] Iteration 6636, lr = 0.00268609
I0428 18:03:08.991241 8468 solver.cpp:218] Iteration 6648 (2.18561 iter/s, 5.49047s/12 iters), loss = 0.252751
I0428 18:03:08.991283 8468 solver.cpp:237] Train net output #0: loss = 0.252751 (* 1 = 0.252751 loss)
I0428 18:03:08.991297 8468 sgd_solver.cpp:105] Iteration 6648, lr = 0.00267971
I0428 18:03:14.405606 8468 solver.cpp:218] Iteration 6660 (2.21644 iter/s, 5.41409s/12 iters), loss = 0.297332
I0428 18:03:14.405647 8468 solver.cpp:237] Train net output #0: loss = 0.297332 (* 1 = 0.297332 loss)
I0428 18:03:14.405655 8468 sgd_solver.cpp:105] Iteration 6660, lr = 0.00267335
I0428 18:03:19.951153 8468 solver.cpp:218] Iteration 6672 (2.16401 iter/s, 5.54526s/12 iters), loss = 0.289358
I0428 18:03:19.951197 8468 solver.cpp:237] Train net output #0: loss = 0.289358 (* 1 = 0.289358 loss)
I0428 18:03:19.951206 8468 sgd_solver.cpp:105] Iteration 6672, lr = 0.00266701
I0428 18:03:21.407281 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:03:25.326848 8468 solver.cpp:218] Iteration 6684 (2.23238 iter/s, 5.37542s/12 iters), loss = 0.322618
I0428 18:03:25.326884 8468 solver.cpp:237] Train net output #0: loss = 0.322618 (* 1 = 0.322618 loss)
I0428 18:03:25.326894 8468 sgd_solver.cpp:105] Iteration 6684, lr = 0.00266067
I0428 18:03:30.807056 8468 solver.cpp:218] Iteration 6696 (2.18981 iter/s, 5.47994s/12 iters), loss = 0.309223
I0428 18:03:30.807163 8468 solver.cpp:237] Train net output #0: loss = 0.309223 (* 1 = 0.309223 loss)
I0428 18:03:30.807173 8468 sgd_solver.cpp:105] Iteration 6696, lr = 0.00265436
I0428 18:03:36.239104 8468 solver.cpp:218] Iteration 6708 (2.20925 iter/s, 5.43171s/12 iters), loss = 0.36083
I0428 18:03:36.239145 8468 solver.cpp:237] Train net output #0: loss = 0.36083 (* 1 = 0.36083 loss)
I0428 18:03:36.239153 8468 sgd_solver.cpp:105] Iteration 6708, lr = 0.00264805
I0428 18:03:41.726828 8468 solver.cpp:218] Iteration 6720 (2.18681 iter/s, 5.48744s/12 iters), loss = 0.362614
I0428 18:03:41.726878 8468 solver.cpp:237] Train net output #0: loss = 0.362614 (* 1 = 0.362614 loss)
I0428 18:03:41.726889 8468 sgd_solver.cpp:105] Iteration 6720, lr = 0.00264177
I0428 18:03:46.644403 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel
I0428 18:03:47.784255 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate
I0428 18:03:49.431664 8468 solver.cpp:330] Iteration 6732, Testing net (#0)
I0428 18:03:49.431689 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:03:51.353683 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:03:54.269656 8468 solver.cpp:397] Test net output #0: accuracy = 0.41973
I0428 18:03:54.269686 8468 solver.cpp:397] Test net output #1: loss = 3.48637 (* 1 = 3.48637 loss)
I0428 18:03:54.398677 8468 solver.cpp:218] Iteration 6732 (0.947024 iter/s, 12.6713s/12 iters), loss = 0.322549
I0428 18:03:54.398718 8468 solver.cpp:237] Train net output #0: loss = 0.322549 (* 1 = 0.322549 loss)
I0428 18:03:54.398730 8468 sgd_solver.cpp:105] Iteration 6732, lr = 0.0026355
I0428 18:03:59.003156 8468 solver.cpp:218] Iteration 6744 (2.6063 iter/s, 4.60423s/12 iters), loss = 0.289209
I0428 18:03:59.003209 8468 solver.cpp:237] Train net output #0: loss = 0.289209 (* 1 = 0.289209 loss)
I0428 18:03:59.003221 8468 sgd_solver.cpp:105] Iteration 6744, lr = 0.00262924
I0428 18:04:04.434573 8468 solver.cpp:218] Iteration 6756 (2.20948 iter/s, 5.43113s/12 iters), loss = 0.323745
I0428 18:04:04.434727 8468 solver.cpp:237] Train net output #0: loss = 0.323745 (* 1 = 0.323745 loss)
I0428 18:04:04.434739 8468 sgd_solver.cpp:105] Iteration 6756, lr = 0.002623
I0428 18:04:10.342371 8468 solver.cpp:218] Iteration 6768 (2.03135 iter/s, 5.9074s/12 iters), loss = 0.236324
I0428 18:04:10.342412 8468 solver.cpp:237] Train net output #0: loss = 0.236324 (* 1 = 0.236324 loss)
I0428 18:04:10.342423 8468 sgd_solver.cpp:105] Iteration 6768, lr = 0.00261677
I0428 18:04:14.146066 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:04:15.783866 8468 solver.cpp:218] Iteration 6780 (2.20539 iter/s, 5.44122s/12 iters), loss = 0.21903
I0428 18:04:15.783907 8468 solver.cpp:237] Train net output #0: loss = 0.21903 (* 1 = 0.21903 loss)
I0428 18:04:15.783916 8468 sgd_solver.cpp:105] Iteration 6780, lr = 0.00261056
I0428 18:04:21.258460 8468 solver.cpp:218] Iteration 6792 (2.19205 iter/s, 5.47432s/12 iters), loss = 0.391115
I0428 18:04:21.258512 8468 solver.cpp:237] Train net output #0: loss = 0.391115 (* 1 = 0.391115 loss)
I0428 18:04:21.258525 8468 sgd_solver.cpp:105] Iteration 6792, lr = 0.00260436
I0428 18:04:26.695336 8468 solver.cpp:218] Iteration 6804 (2.20726 iter/s, 5.4366s/12 iters), loss = 0.28464
I0428 18:04:26.695389 8468 solver.cpp:237] Train net output #0: loss = 0.28464 (* 1 = 0.28464 loss)
I0428 18:04:26.695403 8468 sgd_solver.cpp:105] Iteration 6804, lr = 0.00259817
I0428 18:04:32.013823 8468 solver.cpp:218] Iteration 6816 (2.2564 iter/s, 5.3182s/12 iters), loss = 0.333655
I0428 18:04:32.013880 8468 solver.cpp:237] Train net output #0: loss = 0.333655 (* 1 = 0.333655 loss)
I0428 18:04:32.013891 8468 sgd_solver.cpp:105] Iteration 6816, lr = 0.00259201
I0428 18:04:37.513069 8468 solver.cpp:218] Iteration 6828 (2.18223 iter/s, 5.49896s/12 iters), loss = 0.270133
I0428 18:04:37.513450 8468 solver.cpp:237] Train net output #0: loss = 0.270133 (* 1 = 0.270133 loss)
I0428 18:04:37.513459 8468 sgd_solver.cpp:105] Iteration 6828, lr = 0.00258585
I0428 18:04:39.669755 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel
I0428 18:04:40.267813 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate
I0428 18:04:40.695343 8468 solver.cpp:330] Iteration 6834, Testing net (#0)
I0428 18:04:40.695365 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:04:42.562165 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:04:45.519721 8468 solver.cpp:397] Test net output #0: accuracy = 0.409926
I0428 18:04:45.519759 8468 solver.cpp:397] Test net output #1: loss = 3.40849 (* 1 = 3.40849 loss)
I0428 18:04:47.601761 8468 solver.cpp:218] Iteration 6840 (1.18954 iter/s, 10.0879s/12 iters), loss = 0.37796
I0428 18:04:47.601805 8468 solver.cpp:237] Train net output #0: loss = 0.37796 (* 1 = 0.37796 loss)
I0428 18:04:47.601814 8468 sgd_solver.cpp:105] Iteration 6840, lr = 0.00257971
I0428 18:04:53.047928 8468 solver.cpp:218] Iteration 6852 (2.20349 iter/s, 5.4459s/12 iters), loss = 0.356983
I0428 18:04:53.047966 8468 solver.cpp:237] Train net output #0: loss = 0.356983 (* 1 = 0.356983 loss)
I0428 18:04:53.047974 8468 sgd_solver.cpp:105] Iteration 6852, lr = 0.00257359
I0428 18:04:58.581944 8468 solver.cpp:218] Iteration 6864 (2.16851 iter/s, 5.53374s/12 iters), loss = 0.264756
I0428 18:04:58.581990 8468 solver.cpp:237] Train net output #0: loss = 0.264756 (* 1 = 0.264756 loss)
I0428 18:04:58.582001 8468 sgd_solver.cpp:105] Iteration 6864, lr = 0.00256748
I0428 18:05:04.251026 8468 solver.cpp:218] Iteration 6876 (2.11685 iter/s, 5.6688s/12 iters), loss = 0.212193
I0428 18:05:04.251068 8468 solver.cpp:237] Train net output #0: loss = 0.212193 (* 1 = 0.212193 loss)
I0428 18:05:04.251078 8468 sgd_solver.cpp:105] Iteration 6876, lr = 0.00256138
I0428 18:05:04.902978 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:05:09.683028 8468 solver.cpp:218] Iteration 6888 (2.20924 iter/s, 5.43173s/12 iters), loss = 0.339998
I0428 18:05:09.719424 8468 solver.cpp:237] Train net output #0: loss = 0.339998 (* 1 = 0.339998 loss)
I0428 18:05:09.719436 8468 sgd_solver.cpp:105] Iteration 6888, lr = 0.0025553
I0428 18:05:15.085489 8468 solver.cpp:218] Iteration 6900 (2.23637 iter/s, 5.36584s/12 iters), loss = 0.467551
I0428 18:05:15.085526 8468 solver.cpp:237] Train net output #0: loss = 0.467551 (* 1 = 0.467551 loss)
I0428 18:05:15.085536 8468 sgd_solver.cpp:105] Iteration 6900, lr = 0.00254923
I0428 18:05:20.540688 8468 solver.cpp:218] Iteration 6912 (2.19985 iter/s, 5.45492s/12 iters), loss = 0.272096
I0428 18:05:20.540729 8468 solver.cpp:237] Train net output #0: loss = 0.272096 (* 1 = 0.272096 loss)
I0428 18:05:20.540738 8468 sgd_solver.cpp:105] Iteration 6912, lr = 0.00254318
I0428 18:05:25.893174 8468 solver.cpp:218] Iteration 6924 (2.24206 iter/s, 5.35222s/12 iters), loss = 0.21273
I0428 18:05:25.893214 8468 solver.cpp:237] Train net output #0: loss = 0.21273 (* 1 = 0.21273 loss)
I0428 18:05:25.893226 8468 sgd_solver.cpp:105] Iteration 6924, lr = 0.00253714
I0428 18:05:30.741570 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel
I0428 18:05:31.362273 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate
I0428 18:05:31.790155 8468 solver.cpp:330] Iteration 6936, Testing net (#0)
I0428 18:05:31.790174 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:05:32.079803 8468 blocking_queue.cpp:49] Waiting for data
I0428 18:05:33.437716 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:05:36.280689 8468 solver.cpp:397] Test net output #0: accuracy = 0.423407
I0428 18:05:36.280725 8468 solver.cpp:397] Test net output #1: loss = 3.49238 (* 1 = 3.49238 loss)
I0428 18:05:36.407732 8468 solver.cpp:218] Iteration 6936 (1.14133 iter/s, 10.5141s/12 iters), loss = 0.226995
I0428 18:05:36.407770 8468 solver.cpp:237] Train net output #0: loss = 0.226995 (* 1 = 0.226995 loss)
I0428 18:05:36.407779 8468 sgd_solver.cpp:105] Iteration 6936, lr = 0.00253112
I0428 18:05:40.896755 8468 solver.cpp:218] Iteration 6948 (2.67333 iter/s, 4.48879s/12 iters), loss = 0.24341
I0428 18:05:40.897428 8468 solver.cpp:237] Train net output #0: loss = 0.24341 (* 1 = 0.24341 loss)
I0428 18:05:40.897442 8468 sgd_solver.cpp:105] Iteration 6948, lr = 0.00252511
I0428 18:05:46.226310 8468 solver.cpp:218] Iteration 6960 (2.25197 iter/s, 5.32866s/12 iters), loss = 0.322609
I0428 18:05:46.226349 8468 solver.cpp:237] Train net output #0: loss = 0.322609 (* 1 = 0.322609 loss)
I0428 18:05:46.226359 8468 sgd_solver.cpp:105] Iteration 6960, lr = 0.00251911
I0428 18:05:51.678304 8468 solver.cpp:218] Iteration 6972 (2.20114 iter/s, 5.45172s/12 iters), loss = 0.27452
I0428 18:05:51.678355 8468 solver.cpp:237] Train net output #0: loss = 0.27452 (* 1 = 0.27452 loss)
I0428 18:05:51.678369 8468 sgd_solver.cpp:105] Iteration 6972, lr = 0.00251313
I0428 18:05:54.673506 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:05:57.187011 8468 solver.cpp:218] Iteration 6984 (2.17848 iter/s, 5.50842s/12 iters), loss = 0.256837
I0428 18:05:57.187052 8468 solver.cpp:237] Train net output #0: loss = 0.256837 (* 1 = 0.256837 loss)
I0428 18:05:57.187060 8468 sgd_solver.cpp:105] Iteration 6984, lr = 0.00250717
I0428 18:06:02.588347 8468 solver.cpp:218] Iteration 6996 (2.22178 iter/s, 5.40106s/12 iters), loss = 0.314635
I0428 18:06:02.588387 8468 solver.cpp:237] Train net output #0: loss = 0.314635 (* 1 = 0.314635 loss)
I0428 18:06:02.588397 8468 sgd_solver.cpp:105] Iteration 6996, lr = 0.00250121
I0428 18:06:08.116542 8468 solver.cpp:218] Iteration 7008 (2.17081 iter/s, 5.52789s/12 iters), loss = 0.338179
I0428 18:06:08.116583 8468 solver.cpp:237] Train net output #0: loss = 0.338179 (* 1 = 0.338179 loss)
I0428 18:06:08.116593 8468 sgd_solver.cpp:105] Iteration 7008, lr = 0.00249528
I0428 18:06:13.446604 8468 solver.cpp:218] Iteration 7020 (2.2515 iter/s, 5.32979s/12 iters), loss = 0.280241
I0428 18:06:13.446768 8468 solver.cpp:237] Train net output #0: loss = 0.280241 (* 1 = 0.280241 loss)
I0428 18:06:13.446780 8468 sgd_solver.cpp:105] Iteration 7020, lr = 0.00248935
I0428 18:06:18.949383 8468 solver.cpp:218] Iteration 7032 (2.18087 iter/s, 5.50238s/12 iters), loss = 0.224451
I0428 18:06:18.949421 8468 solver.cpp:237] Train net output #0: loss = 0.224451 (* 1 = 0.224451 loss)
I0428 18:06:18.949430 8468 sgd_solver.cpp:105] Iteration 7032, lr = 0.00248344
I0428 18:06:21.103364 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel
I0428 18:06:21.721436 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate
I0428 18:06:22.152287 8468 solver.cpp:330] Iteration 7038, Testing net (#0)
I0428 18:06:22.152312 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:06:23.801133 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:06:26.849586 8468 solver.cpp:397] Test net output #0: accuracy = 0.425245
I0428 18:06:26.849622 8468 solver.cpp:397] Test net output #1: loss = 3.46346 (* 1 = 3.46346 loss)
I0428 18:06:28.924566 8468 solver.cpp:218] Iteration 7044 (1.20304 iter/s, 9.97473s/12 iters), loss = 0.231223
I0428 18:06:28.924604 8468 solver.cpp:237] Train net output #0: loss = 0.231223 (* 1 = 0.231223 loss)
I0428 18:06:28.924615 8468 sgd_solver.cpp:105] Iteration 7044, lr = 0.00247755
I0428 18:06:34.391755 8468 solver.cpp:218] Iteration 7056 (2.19502 iter/s, 5.46692s/12 iters), loss = 0.221365
I0428 18:06:34.391803 8468 solver.cpp:237] Train net output #0: loss = 0.221365 (* 1 = 0.221365 loss)
I0428 18:06:34.391815 8468 sgd_solver.cpp:105] Iteration 7056, lr = 0.00247166
I0428 18:06:39.784921 8468 solver.cpp:218] Iteration 7068 (2.22515 iter/s, 5.39288s/12 iters), loss = 0.266817
I0428 18:06:39.784976 8468 solver.cpp:237] Train net output #0: loss = 0.266817 (* 1 = 0.266817 loss)
I0428 18:06:39.784992 8468 sgd_solver.cpp:105] Iteration 7068, lr = 0.0024658
I0428 18:06:44.995469 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:06:45.139081 8468 solver.cpp:218] Iteration 7080 (2.24137 iter/s, 5.35388s/12 iters), loss = 0.268101
I0428 18:06:45.139122 8468 solver.cpp:237] Train net output #0: loss = 0.268101 (* 1 = 0.268101 loss)
I0428 18:06:45.139132 8468 sgd_solver.cpp:105] Iteration 7080, lr = 0.00245994
I0428 18:06:50.586539 8468 solver.cpp:218] Iteration 7092 (2.20297 iter/s, 5.44718s/12 iters), loss = 0.211526
I0428 18:06:50.586591 8468 solver.cpp:237] Train net output #0: loss = 0.211526 (* 1 = 0.211526 loss)
I0428 18:06:50.586603 8468 sgd_solver.cpp:105] Iteration 7092, lr = 0.0024541
I0428 18:06:56.069726 8468 solver.cpp:218] Iteration 7104 (2.18862 iter/s, 5.48291s/12 iters), loss = 0.267729
I0428 18:06:56.069766 8468 solver.cpp:237] Train net output #0: loss = 0.267729 (* 1 = 0.267729 loss)
I0428 18:06:56.069777 8468 sgd_solver.cpp:105] Iteration 7104, lr = 0.00244827
I0428 18:07:01.414304 8468 solver.cpp:218] Iteration 7116 (2.24538 iter/s, 5.34431s/12 iters), loss = 0.241553
I0428 18:07:01.414343 8468 solver.cpp:237] Train net output #0: loss = 0.241553 (* 1 = 0.241553 loss)
I0428 18:07:01.414353 8468 sgd_solver.cpp:105] Iteration 7116, lr = 0.00244246
I0428 18:07:06.901561 8468 solver.cpp:218] Iteration 7128 (2.187 iter/s, 5.48698s/12 iters), loss = 0.335122
I0428 18:07:06.901602 8468 solver.cpp:237] Train net output #0: loss = 0.335122 (* 1 = 0.335122 loss)
I0428 18:07:06.901610 8468 sgd_solver.cpp:105] Iteration 7128, lr = 0.00243666
I0428 18:07:11.805938 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel
I0428 18:07:12.584631 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate
I0428 18:07:13.289530 8468 solver.cpp:330] Iteration 7140, Testing net (#0)
I0428 18:07:13.289554 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:07:14.866348 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:07:17.948874 8468 solver.cpp:397] Test net output #0: accuracy = 0.438113
I0428 18:07:17.949012 8468 solver.cpp:397] Test net output #1: loss = 3.48926 (* 1 = 3.48926 loss)
I0428 18:07:18.080155 8468 solver.cpp:218] Iteration 7140 (1.07353 iter/s, 11.1781s/12 iters), loss = 0.217267
I0428 18:07:18.080197 8468 solver.cpp:237] Train net output #0: loss = 0.217267 (* 1 = 0.217267 loss)
I0428 18:07:18.080209 8468 sgd_solver.cpp:105] Iteration 7140, lr = 0.00243088
I0428 18:07:22.602385 8468 solver.cpp:218] Iteration 7152 (2.6537 iter/s, 4.52199s/12 iters), loss = 0.157984
I0428 18:07:22.602425 8468 solver.cpp:237] Train net output #0: loss = 0.157984 (* 1 = 0.157984 loss)
I0428 18:07:22.602433 8468 sgd_solver.cpp:105] Iteration 7152, lr = 0.00242511
I0428 18:07:28.258168 8468 solver.cpp:218] Iteration 7164 (2.12183 iter/s, 5.6555s/12 iters), loss = 0.242612
I0428 18:07:28.258222 8468 solver.cpp:237] Train net output #0: loss = 0.242612 (* 1 = 0.242612 loss)
I0428 18:07:28.258235 8468 sgd_solver.cpp:105] Iteration 7164, lr = 0.00241935
I0428 18:07:33.751466 8468 solver.cpp:218] Iteration 7176 (2.18459 iter/s, 5.49301s/12 iters), loss = 0.211294
I0428 18:07:33.751504 8468 solver.cpp:237] Train net output #0: loss = 0.211294 (* 1 = 0.211294 loss)
I0428 18:07:33.751514 8468 sgd_solver.cpp:105] Iteration 7176, lr = 0.0024136
I0428 18:07:36.092033 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:07:39.191826 8468 solver.cpp:218] Iteration 7188 (2.20585 iter/s, 5.44009s/12 iters), loss = 0.284513
I0428 18:07:39.191876 8468 solver.cpp:237] Train net output #0: loss = 0.284513 (* 1 = 0.284513 loss)
I0428 18:07:39.191890 8468 sgd_solver.cpp:105] Iteration 7188, lr = 0.00240787
I0428 18:07:44.768633 8468 solver.cpp:218] Iteration 7200 (2.15188 iter/s, 5.57652s/12 iters), loss = 0.196213
I0428 18:07:44.768687 8468 solver.cpp:237] Train net output #0: loss = 0.196213 (* 1 = 0.196213 loss)
I0428 18:07:44.768705 8468 sgd_solver.cpp:105] Iteration 7200, lr = 0.00240216
I0428 18:07:50.197012 8468 solver.cpp:218] Iteration 7212 (2.21072 iter/s, 5.4281s/12 iters), loss = 0.309912
I0428 18:07:50.197134 8468 solver.cpp:237] Train net output #0: loss = 0.309912 (* 1 = 0.309912 loss)
I0428 18:07:50.197150 8468 sgd_solver.cpp:105] Iteration 7212, lr = 0.00239645
I0428 18:07:55.635927 8468 solver.cpp:218] Iteration 7224 (2.20646 iter/s, 5.43857s/12 iters), loss = 0.255081
I0428 18:07:55.635968 8468 solver.cpp:237] Train net output #0: loss = 0.255081 (* 1 = 0.255081 loss)
I0428 18:07:55.635978 8468 sgd_solver.cpp:105] Iteration 7224, lr = 0.00239076
I0428 18:08:01.230947 8468 solver.cpp:218] Iteration 7236 (2.14487 iter/s, 5.59474s/12 iters), loss = 0.266401
I0428 18:08:01.230988 8468 solver.cpp:237] Train net output #0: loss = 0.266401 (* 1 = 0.266401 loss)
I0428 18:08:01.230998 8468 sgd_solver.cpp:105] Iteration 7236, lr = 0.00238509
I0428 18:08:03.437204 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel
I0428 18:08:05.084442 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate
I0428 18:08:05.925941 8468 solver.cpp:330] Iteration 7242, Testing net (#0)
I0428 18:08:05.925966 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:08:07.479583 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:08:10.559551 8468 solver.cpp:397] Test net output #0: accuracy = 0.427083
I0428 18:08:10.559582 8468 solver.cpp:397] Test net output #1: loss = 3.51863 (* 1 = 3.51863 loss)
I0428 18:08:12.544287 8468 solver.cpp:218] Iteration 7248 (1.06074 iter/s, 11.3128s/12 iters), loss = 0.344783
I0428 18:08:12.544328 8468 solver.cpp:237] Train net output #0: loss = 0.344783 (* 1 = 0.344783 loss)
I0428 18:08:12.544337 8468 sgd_solver.cpp:105] Iteration 7248, lr = 0.00237942
I0428 18:08:18.067800 8468 solver.cpp:218] Iteration 7260 (2.17264 iter/s, 5.52323s/12 iters), loss = 0.232457
I0428 18:08:18.067849 8468 solver.cpp:237] Train net output #0: loss = 0.232457 (* 1 = 0.232457 loss)
I0428 18:08:18.067860 8468 sgd_solver.cpp:105] Iteration 7260, lr = 0.00237378
I0428 18:08:23.575650 8468 solver.cpp:218] Iteration 7272 (2.17882 iter/s, 5.50756s/12 iters), loss = 0.177145
I0428 18:08:23.575831 8468 solver.cpp:237] Train net output #0: loss = 0.177145 (* 1 = 0.177145 loss)
I0428 18:08:23.575845 8468 sgd_solver.cpp:105] Iteration 7272, lr = 0.00236814
I0428 18:08:28.149188 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:08:28.960183 8468 solver.cpp:218] Iteration 7284 (2.22878 iter/s, 5.38412s/12 iters), loss = 0.172017
I0428 18:08:28.960237 8468 solver.cpp:237] Train net output #0: loss = 0.172017 (* 1 = 0.172017 loss)
I0428 18:08:28.960251 8468 sgd_solver.cpp:105] Iteration 7284, lr = 0.00236252
I0428 18:08:34.357853 8468 solver.cpp:218] Iteration 7296 (2.2233 iter/s, 5.39739s/12 iters), loss = 0.225122
I0428 18:08:34.357895 8468 solver.cpp:237] Train net output #0: loss = 0.225122 (* 1 = 0.225122 loss)
I0428 18:08:34.357903 8468 sgd_solver.cpp:105] Iteration 7296, lr = 0.00235691
I0428 18:08:39.989686 8468 solver.cpp:218] Iteration 7308 (2.13085 iter/s, 5.63155s/12 iters), loss = 0.14413
I0428 18:08:39.989720 8468 solver.cpp:237] Train net output #0: loss = 0.14413 (* 1 = 0.14413 loss)
I0428 18:08:39.989729 8468 sgd_solver.cpp:105] Iteration 7308, lr = 0.00235131
I0428 18:08:45.449594 8468 solver.cpp:218] Iteration 7320 (2.19795 iter/s, 5.45964s/12 iters), loss = 0.287017
I0428 18:08:45.449633 8468 solver.cpp:237] Train net output #0: loss = 0.287017 (* 1 = 0.287017 loss)
I0428 18:08:45.449642 8468 sgd_solver.cpp:105] Iteration 7320, lr = 0.00234573
I0428 18:08:51.018020 8468 solver.cpp:218] Iteration 7332 (2.15511 iter/s, 5.56815s/12 iters), loss = 0.286699
I0428 18:08:51.018061 8468 solver.cpp:237] Train net output #0: loss = 0.286699 (* 1 = 0.286699 loss)
I0428 18:08:51.018071 8468 sgd_solver.cpp:105] Iteration 7332, lr = 0.00234016
I0428 18:08:55.919543 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel
I0428 18:08:56.526391 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate
I0428 18:08:56.969305 8468 solver.cpp:330] Iteration 7344, Testing net (#0)
I0428 18:08:56.969327 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:08:58.608105 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:09:01.720592 8468 solver.cpp:397] Test net output #0: accuracy = 0.4375
I0428 18:09:01.720626 8468 solver.cpp:397] Test net output #1: loss = 3.56824 (* 1 = 3.56824 loss)
I0428 18:09:01.846284 8468 solver.cpp:218] Iteration 7344 (1.10826 iter/s, 10.8278s/12 iters), loss = 0.188547
I0428 18:09:01.846343 8468 solver.cpp:237] Train net output #0: loss = 0.188547 (* 1 = 0.188547 loss)
I0428 18:09:01.846356 8468 sgd_solver.cpp:105] Iteration 7344, lr = 0.0023346
I0428 18:09:06.338286 8468 solver.cpp:218] Iteration 7356 (2.67156 iter/s, 4.49175s/12 iters), loss = 0.312952
I0428 18:09:06.338327 8468 solver.cpp:237] Train net output #0: loss = 0.312952 (* 1 = 0.312952 loss)
I0428 18:09:06.338337 8468 sgd_solver.cpp:105] Iteration 7356, lr = 0.00232906
I0428 18:09:11.700342 8468 solver.cpp:218] Iteration 7368 (2.23806 iter/s, 5.36178s/12 iters), loss = 0.152558
I0428 18:09:11.700395 8468 solver.cpp:237] Train net output #0: loss = 0.152558 (* 1 = 0.152558 loss)
I0428 18:09:11.700408 8468 sgd_solver.cpp:105] Iteration 7368, lr = 0.00232353
I0428 18:09:17.035991 8468 solver.cpp:218] Iteration 7380 (2.24914 iter/s, 5.33537s/12 iters), loss = 0.268929
I0428 18:09:17.036046 8468 solver.cpp:237] Train net output #0: loss = 0.268929 (* 1 = 0.268929 loss)
I0428 18:09:17.036059 8468 sgd_solver.cpp:105] Iteration 7380, lr = 0.00231802
I0428 18:09:18.492779 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:09:22.343633 8468 solver.cpp:218] Iteration 7392 (2.26101 iter/s, 5.30736s/12 iters), loss = 0.207175
I0428 18:09:22.343691 8468 solver.cpp:237] Train net output #0: loss = 0.207175 (* 1 = 0.207175 loss)
I0428 18:09:22.343704 8468 sgd_solver.cpp:105] Iteration 7392, lr = 0.00231251
I0428 18:09:27.679854 8468 solver.cpp:218] Iteration 7404 (2.2489 iter/s, 5.33594s/12 iters), loss = 0.175469
I0428 18:09:27.680030 8468 solver.cpp:237] Train net output #0: loss = 0.175469 (* 1 = 0.175469 loss)
I0428 18:09:27.680043 8468 sgd_solver.cpp:105] Iteration 7404, lr = 0.00230702
I0428 18:09:32.994541 8468 solver.cpp:218] Iteration 7416 (2.25807 iter/s, 5.31428s/12 iters), loss = 0.189292
I0428 18:09:32.994596 8468 solver.cpp:237] Train net output #0: loss = 0.189292 (* 1 = 0.189292 loss)
I0428 18:09:32.994611 8468 sgd_solver.cpp:105] Iteration 7416, lr = 0.00230154
I0428 18:09:38.328317 8468 solver.cpp:218] Iteration 7428 (2.24993 iter/s, 5.3335s/12 iters), loss = 0.209375
I0428 18:09:38.328372 8468 solver.cpp:237] Train net output #0: loss = 0.209375 (* 1 = 0.209375 loss)
I0428 18:09:38.328383 8468 sgd_solver.cpp:105] Iteration 7428, lr = 0.00229608
I0428 18:09:43.775434 8468 solver.cpp:218] Iteration 7440 (2.20312 iter/s, 5.44683s/12 iters), loss = 0.224886
I0428 18:09:43.775477 8468 solver.cpp:237] Train net output #0: loss = 0.224886 (* 1 = 0.224886 loss)
I0428 18:09:43.775488 8468 sgd_solver.cpp:105] Iteration 7440, lr = 0.00229063
I0428 18:09:46.078490 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel
I0428 18:09:47.200209 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate
I0428 18:09:49.724898 8468 solver.cpp:330] Iteration 7446, Testing net (#0)
I0428 18:09:49.724916 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:09:51.367174 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:09:54.600729 8468 solver.cpp:397] Test net output #0: accuracy = 0.441176
I0428 18:09:54.600760 8468 solver.cpp:397] Test net output #1: loss = 3.44962 (* 1 = 3.44962 loss)
I0428 18:09:56.566316 8468 solver.cpp:218] Iteration 7452 (0.93821 iter/s, 12.7903s/12 iters), loss = 0.276515
I0428 18:09:56.566356 8468 solver.cpp:237] Train net output #0: loss = 0.276515 (* 1 = 0.276515 loss)
I0428 18:09:56.566365 8468 sgd_solver.cpp:105] Iteration 7452, lr = 0.00228519
I0428 18:10:02.041518 8468 solver.cpp:218] Iteration 7464 (2.19181 iter/s, 5.47493s/12 iters), loss = 0.126806
I0428 18:10:02.041651 8468 solver.cpp:237] Train net output #0: loss = 0.126806 (* 1 = 0.126806 loss)
I0428 18:10:02.041662 8468 sgd_solver.cpp:105] Iteration 7464, lr = 0.00227976
I0428 18:10:07.377041 8468 solver.cpp:218] Iteration 7476 (2.24923 iter/s, 5.33516s/12 iters), loss = 0.259034
I0428 18:10:07.377094 8468 solver.cpp:237] Train net output #0: loss = 0.259034 (* 1 = 0.259034 loss)
I0428 18:10:07.377105 8468 sgd_solver.cpp:105] Iteration 7476, lr = 0.00227435
I0428 18:10:11.104653 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:10:12.701375 8468 solver.cpp:218] Iteration 7488 (2.25392 iter/s, 5.32405s/12 iters), loss = 0.140633
I0428 18:10:12.701429 8468 solver.cpp:237] Train net output #0: loss = 0.140633 (* 1 = 0.140633 loss)
I0428 18:10:12.701443 8468 sgd_solver.cpp:105] Iteration 7488, lr = 0.00226895
I0428 18:10:18.019381 8468 solver.cpp:218] Iteration 7500 (2.2566 iter/s, 5.31773s/12 iters), loss = 0.088797
I0428 18:10:18.019438 8468 solver.cpp:237] Train net output #0: loss = 0.088797 (* 1 = 0.088797 loss)
I0428 18:10:18.019450 8468 sgd_solver.cpp:105] Iteration 7500, lr = 0.00226357
I0428 18:10:23.354579 8468 solver.cpp:218] Iteration 7512 (2.24933 iter/s, 5.33491s/12 iters), loss = 0.331284
I0428 18:10:23.354624 8468 solver.cpp:237] Train net output #0: loss = 0.331284 (* 1 = 0.331284 loss)
I0428 18:10:23.354636 8468 sgd_solver.cpp:105] Iteration 7512, lr = 0.00225819
I0428 18:10:28.693856 8468 solver.cpp:218] Iteration 7524 (2.24761 iter/s, 5.339s/12 iters), loss = 0.213642
I0428 18:10:28.693895 8468 solver.cpp:237] Train net output #0: loss = 0.213642 (* 1 = 0.213642 loss)
I0428 18:10:28.693905 8468 sgd_solver.cpp:105] Iteration 7524, lr = 0.00225283
I0428 18:10:34.043642 8468 solver.cpp:218] Iteration 7536 (2.24319 iter/s, 5.34951s/12 iters), loss = 0.0567069
I0428 18:10:34.043831 8468 solver.cpp:237] Train net output #0: loss = 0.0567069 (* 1 = 0.0567069 loss)
I0428 18:10:34.043845 8468 sgd_solver.cpp:105] Iteration 7536, lr = 0.00224748
I0428 18:10:38.830756 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel
I0428 18:10:39.439297 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate
I0428 18:10:39.869743 8468 solver.cpp:330] Iteration 7548, Testing net (#0)
I0428 18:10:39.869768 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:10:41.280648 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:10:44.358454 8468 solver.cpp:397] Test net output #0: accuracy = 0.428309
I0428 18:10:44.358494 8468 solver.cpp:397] Test net output #1: loss = 3.67156 (* 1 = 3.67156 loss)
I0428 18:10:44.489868 8468 solver.cpp:218] Iteration 7548 (1.14881 iter/s, 10.4456s/12 iters), loss = 0.224147
I0428 18:10:44.489920 8468 solver.cpp:237] Train net output #0: loss = 0.224147 (* 1 = 0.224147 loss)
I0428 18:10:44.489935 8468 sgd_solver.cpp:105] Iteration 7548, lr = 0.00224215
I0428 18:10:49.016124 8468 solver.cpp:218] Iteration 7560 (2.65135 iter/s, 4.526s/12 iters), loss = 0.124692
I0428 18:10:49.016175 8468 solver.cpp:237] Train net output #0: loss = 0.124692 (* 1 = 0.124692 loss)
I0428 18:10:49.016188 8468 sgd_solver.cpp:105] Iteration 7560, lr = 0.00223682
I0428 18:10:54.457159 8468 solver.cpp:218] Iteration 7572 (2.20558 iter/s, 5.44076s/12 iters), loss = 0.273672
I0428 18:10:54.457198 8468 solver.cpp:237] Train net output #0: loss = 0.273672 (* 1 = 0.273672 loss)
I0428 18:10:54.457207 8468 sgd_solver.cpp:105] Iteration 7572, lr = 0.00223151
I0428 18:10:59.742995 8468 solver.cpp:218] Iteration 7584 (2.27033 iter/s, 5.28558s/12 iters), loss = 0.187962
I0428 18:10:59.743032 8468 solver.cpp:237] Train net output #0: loss = 0.187962 (* 1 = 0.187962 loss)
I0428 18:10:59.743042 8468 sgd_solver.cpp:105] Iteration 7584, lr = 0.00222621
I0428 18:11:00.474061 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:11:05.206089 8468 solver.cpp:218] Iteration 7596 (2.19667 iter/s, 5.46282s/12 iters), loss = 0.317059
I0428 18:11:05.206233 8468 solver.cpp:237] Train net output #0: loss = 0.317059 (* 1 = 0.317059 loss)
I0428 18:11:05.206243 8468 sgd_solver.cpp:105] Iteration 7596, lr = 0.00222093
I0428 18:11:10.610764 8468 solver.cpp:218] Iteration 7608 (2.22045 iter/s, 5.4043s/12 iters), loss = 0.224805
I0428 18:11:10.610814 8468 solver.cpp:237] Train net output #0: loss = 0.224805 (* 1 = 0.224805 loss)
I0428 18:11:10.610826 8468 sgd_solver.cpp:105] Iteration 7608, lr = 0.00221565
I0428 18:11:16.073866 8468 solver.cpp:218] Iteration 7620 (2.19667 iter/s, 5.46282s/12 iters), loss = 0.124447
I0428 18:11:16.073909 8468 solver.cpp:237] Train net output #0: loss = 0.124447 (* 1 = 0.124447 loss)
I0428 18:11:16.073917 8468 sgd_solver.cpp:105] Iteration 7620, lr = 0.00221039
I0428 18:11:17.341874 8468 blocking_queue.cpp:49] Waiting for data
I0428 18:11:21.492580 8468 solver.cpp:218] Iteration 7632 (2.21466 iter/s, 5.41843s/12 iters), loss = 0.14238
I0428 18:11:21.492636 8468 solver.cpp:237] Train net output #0: loss = 0.14238 (* 1 = 0.14238 loss)
I0428 18:11:21.492650 8468 sgd_solver.cpp:105] Iteration 7632, lr = 0.00220515
I0428 18:11:26.876781 8468 solver.cpp:218] Iteration 7644 (2.22886 iter/s, 5.38391s/12 iters), loss = 0.137286
I0428 18:11:26.876821 8468 solver.cpp:237] Train net output #0: loss = 0.137286 (* 1 = 0.137286 loss)
I0428 18:11:26.876832 8468 sgd_solver.cpp:105] Iteration 7644, lr = 0.00219991
I0428 18:11:29.061465 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel
I0428 18:11:30.078969 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate
I0428 18:11:32.120236 8468 solver.cpp:330] Iteration 7650, Testing net (#0)
I0428 18:11:32.120256 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:11:33.600946 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:11:36.951268 8468 solver.cpp:397] Test net output #0: accuracy = 0.433211
I0428 18:11:36.952530 8468 solver.cpp:397] Test net output #1: loss = 3.60329 (* 1 = 3.60329 loss)
I0428 18:11:38.979676 8468 solver.cpp:218] Iteration 7656 (0.991542 iter/s, 12.1024s/12 iters), loss = 0.162917
I0428 18:11:38.979714 8468 solver.cpp:237] Train net output #0: loss = 0.162917 (* 1 = 0.162917 loss)
I0428 18:11:38.979724 8468 sgd_solver.cpp:105] Iteration 7656, lr = 0.00219469
I0428 18:11:44.419478 8468 solver.cpp:218] Iteration 7668 (2.20607 iter/s, 5.43954s/12 iters), loss = 0.164272
I0428 18:11:44.419519 8468 solver.cpp:237] Train net output #0: loss = 0.164272 (* 1 = 0.164272 loss)
I0428 18:11:44.419529 8468 sgd_solver.cpp:105] Iteration 7668, lr = 0.00218948
I0428 18:11:49.858776 8468 solver.cpp:218] Iteration 7680 (2.20628 iter/s, 5.43902s/12 iters), loss = 0.228421
I0428 18:11:49.858826 8468 solver.cpp:237] Train net output #0: loss = 0.228421 (* 1 = 0.228421 loss)
I0428 18:11:49.858837 8468 sgd_solver.cpp:105] Iteration 7680, lr = 0.00218428
I0428 18:11:52.831378 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:11:55.230648 8468 solver.cpp:218] Iteration 7692 (2.23398 iter/s, 5.37159s/12 iters), loss = 0.182786
I0428 18:11:55.230706 8468 solver.cpp:237] Train net output #0: loss = 0.182786 (* 1 = 0.182786 loss)
I0428 18:11:55.230718 8468 sgd_solver.cpp:105] Iteration 7692, lr = 0.00217909
I0428 18:12:00.605233 8468 solver.cpp:218] Iteration 7704 (2.23285 iter/s, 5.3743s/12 iters), loss = 0.2058
I0428 18:12:00.605273 8468 solver.cpp:237] Train net output #0: loss = 0.2058 (* 1 = 0.2058 loss)
I0428 18:12:00.605283 8468 sgd_solver.cpp:105] Iteration 7704, lr = 0.00217392
I0428 18:12:06.161785 8468 solver.cpp:218] Iteration 7716 (2.15972 iter/s, 5.55628s/12 iters), loss = 0.0865956
I0428 18:12:06.161826 8468 solver.cpp:237] Train net output #0: loss = 0.0865956 (* 1 = 0.0865956 loss)
I0428 18:12:06.161835 8468 sgd_solver.cpp:105] Iteration 7716, lr = 0.00216876
I0428 18:12:11.567170 8468 solver.cpp:218] Iteration 7728 (2.22012 iter/s, 5.40511s/12 iters), loss = 0.190469
I0428 18:12:11.567293 8468 solver.cpp:237] Train net output #0: loss = 0.190469 (* 1 = 0.190469 loss)
I0428 18:12:11.567303 8468 sgd_solver.cpp:105] Iteration 7728, lr = 0.00216361
I0428 18:12:17.277549 8468 solver.cpp:218] Iteration 7740 (2.10157 iter/s, 5.71001s/12 iters), loss = 0.117419
I0428 18:12:17.277590 8468 solver.cpp:237] Train net output #0: loss = 0.117419 (* 1 = 0.117419 loss)
I0428 18:12:17.277599 8468 sgd_solver.cpp:105] Iteration 7740, lr = 0.00215847
I0428 18:12:22.114804 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel
I0428 18:12:22.694725 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate
I0428 18:12:23.120085 8468 solver.cpp:330] Iteration 7752, Testing net (#0)
I0428 18:12:23.120112 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:12:24.586930 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:12:28.030323 8468 solver.cpp:397] Test net output #0: accuracy = 0.434436
I0428 18:12:28.030359 8468 solver.cpp:397] Test net output #1: loss = 3.6524 (* 1 = 3.6524 loss)
I0428 18:12:28.160256 8468 solver.cpp:218] Iteration 7752 (1.10272 iter/s, 10.8822s/12 iters), loss = 0.137458
I0428 18:12:28.160307 8468 solver.cpp:237] Train net output #0: loss = 0.137458 (* 1 = 0.137458 loss)
I0428 18:12:28.160320 8468 sgd_solver.cpp:105] Iteration 7752, lr = 0.00215335
I0428 18:12:32.822734 8468 solver.cpp:218] Iteration 7764 (2.57388 iter/s, 4.66222s/12 iters), loss = 0.253931
I0428 18:12:32.822778 8468 solver.cpp:237] Train net output #0: loss = 0.253931 (* 1 = 0.253931 loss)
I0428 18:12:32.822789 8468 sgd_solver.cpp:105] Iteration 7764, lr = 0.00214823
I0428 18:12:38.300952 8468 solver.cpp:218] Iteration 7776 (2.1906 iter/s, 5.47794s/12 iters), loss = 0.178485
I0428 18:12:38.300992 8468 solver.cpp:237] Train net output #0: loss = 0.178485 (* 1 = 0.178485 loss)
I0428 18:12:38.301002 8468 sgd_solver.cpp:105] Iteration 7776, lr = 0.00214313
I0428 18:12:43.735524 8468 solver.cpp:218] Iteration 7788 (2.2082 iter/s, 5.4343s/12 iters), loss = 0.24323
I0428 18:12:43.735663 8468 solver.cpp:237] Train net output #0: loss = 0.24323 (* 1 = 0.24323 loss)
I0428 18:12:43.735682 8468 sgd_solver.cpp:105] Iteration 7788, lr = 0.00213805
I0428 18:12:43.742202 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:12:49.266714 8468 solver.cpp:218] Iteration 7800 (2.16966 iter/s, 5.53082s/12 iters), loss = 0.120956
I0428 18:12:49.266757 8468 solver.cpp:237] Train net output #0: loss = 0.120956 (* 1 = 0.120956 loss)
I0428 18:12:49.266767 8468 sgd_solver.cpp:105] Iteration 7800, lr = 0.00213297
I0428 18:12:54.739207 8468 solver.cpp:218] Iteration 7812 (2.1929 iter/s, 5.47222s/12 iters), loss = 0.107132
I0428 18:12:54.739248 8468 solver.cpp:237] Train net output #0: loss = 0.107132 (* 1 = 0.107132 loss)
I0428 18:12:54.739257 8468 sgd_solver.cpp:105] Iteration 7812, lr = 0.00212791
I0428 18:13:00.062855 8468 solver.cpp:218] Iteration 7824 (2.25421 iter/s, 5.32337s/12 iters), loss = 0.196546
I0428 18:13:00.062911 8468 solver.cpp:237] Train net output #0: loss = 0.196546 (* 1 = 0.196546 loss)
I0428 18:13:00.062925 8468 sgd_solver.cpp:105] Iteration 7824, lr = 0.00212285
I0428 18:13:05.423000 8468 solver.cpp:218] Iteration 7836 (2.23886 iter/s, 5.35986s/12 iters), loss = 0.217592
I0428 18:13:05.423045 8468 solver.cpp:237] Train net output #0: loss = 0.217592 (* 1 = 0.217592 loss)
I0428 18:13:05.423054 8468 sgd_solver.cpp:105] Iteration 7836, lr = 0.00211781
I0428 18:13:10.873312 8468 solver.cpp:218] Iteration 7848 (2.20182 iter/s, 5.45004s/12 iters), loss = 0.151784
I0428 18:13:10.873353 8468 solver.cpp:237] Train net output #0: loss = 0.151784 (* 1 = 0.151784 loss)
I0428 18:13:10.873363 8468 sgd_solver.cpp:105] Iteration 7848, lr = 0.00211279
I0428 18:13:13.026502 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel
I0428 18:13:14.689566 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate
I0428 18:13:16.244551 8468 solver.cpp:330] Iteration 7854, Testing net (#0)
I0428 18:13:16.244570 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:13:17.632016 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:13:21.196959 8468 solver.cpp:397] Test net output #0: accuracy = 0.4375
I0428 18:13:21.196997 8468 solver.cpp:397] Test net output #1: loss = 3.59462 (* 1 = 3.59462 loss)
I0428 18:13:23.190734 8468 solver.cpp:218] Iteration 7860 (0.974273 iter/s, 12.3169s/12 iters), loss = 0.13613
I0428 18:13:23.190775 8468 solver.cpp:237] Train net output #0: loss = 0.13613 (* 1 = 0.13613 loss)
I0428 18:13:23.190785 8468 sgd_solver.cpp:105] Iteration 7860, lr = 0.00210777
I0428 18:13:28.568832 8468 solver.cpp:218] Iteration 7872 (2.23139 iter/s, 5.37782s/12 iters), loss = 0.120384
I0428 18:13:28.568873 8468 solver.cpp:237] Train net output #0: loss = 0.120384 (* 1 = 0.120384 loss)
I0428 18:13:28.568882 8468 sgd_solver.cpp:105] Iteration 7872, lr = 0.00210277
I0428 18:13:34.017750 8468 solver.cpp:218] Iteration 7884 (2.20238 iter/s, 5.44864s/12 iters), loss = 0.150708
I0428 18:13:34.017800 8468 solver.cpp:237] Train net output #0: loss = 0.150708 (* 1 = 0.150708 loss)
I0428 18:13:34.017812 8468 sgd_solver.cpp:105] Iteration 7884, lr = 0.00209777
I0428 18:13:36.485612 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:13:39.608021 8468 solver.cpp:218] Iteration 7896 (2.1467 iter/s, 5.58998s/12 iters), loss = 0.158864
I0428 18:13:39.608081 8468 solver.cpp:237] Train net output #0: loss = 0.158864 (* 1 = 0.158864 loss)
I0428 18:13:39.608094 8468 sgd_solver.cpp:105] Iteration 7896, lr = 0.00209279
I0428 18:13:45.285928 8468 solver.cpp:218] Iteration 7908 (2.11357 iter/s, 5.67761s/12 iters), loss = 0.157448
I0428 18:13:45.287047 8468 solver.cpp:237] Train net output #0: loss = 0.157448 (* 1 = 0.157448 loss)
I0428 18:13:45.287056 8468 sgd_solver.cpp:105] Iteration 7908, lr = 0.00208782
I0428 18:13:50.646668 8468 solver.cpp:218] Iteration 7920 (2.23906 iter/s, 5.3594s/12 iters), loss = 0.14125
I0428 18:13:50.646713 8468 solver.cpp:237] Train net output #0: loss = 0.14125 (* 1 = 0.14125 loss)
I0428 18:13:50.646721 8468 sgd_solver.cpp:105] Iteration 7920, lr = 0.00208287
I0428 18:13:56.109462 8468 solver.cpp:218] Iteration 7932 (2.1968 iter/s, 5.4625s/12 iters), loss = 0.23788
I0428 18:13:56.109501 8468 solver.cpp:237] Train net output #0: loss = 0.23788 (* 1 = 0.23788 loss)
I0428 18:13:56.109510 8468 sgd_solver.cpp:105] Iteration 7932, lr = 0.00207792
I0428 18:14:01.598891 8468 solver.cpp:218] Iteration 7944 (2.18613 iter/s, 5.48916s/12 iters), loss = 0.174911
I0428 18:14:01.598930 8468 solver.cpp:237] Train net output #0: loss = 0.174911 (* 1 = 0.174911 loss)
I0428 18:14:01.598939 8468 sgd_solver.cpp:105] Iteration 7944, lr = 0.00207299
I0428 18:14:06.500922 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel
I0428 18:14:07.103825 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate
I0428 18:14:07.533442 8468 solver.cpp:330] Iteration 7956, Testing net (#0)
I0428 18:14:07.533463 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:14:08.830888 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:14:12.225193 8468 solver.cpp:397] Test net output #0: accuracy = 0.44424
I0428 18:14:12.225224 8468 solver.cpp:397] Test net output #1: loss = 3.66552 (* 1 = 3.66552 loss)
I0428 18:14:12.354332 8468 solver.cpp:218] Iteration 7956 (1.11576 iter/s, 10.755s/12 iters), loss = 0.11085
I0428 18:14:12.354373 8468 solver.cpp:237] Train net output #0: loss = 0.11085 (* 1 = 0.11085 loss)
I0428 18:14:12.354382 8468 sgd_solver.cpp:105] Iteration 7956, lr = 0.00206807
I0428 18:14:16.909530 8468 solver.cpp:218] Iteration 7968 (2.63449 iter/s, 4.55496s/12 iters), loss = 0.15136
I0428 18:14:16.909768 8468 solver.cpp:237] Train net output #0: loss = 0.15136 (* 1 = 0.15136 loss)
I0428 18:14:16.909780 8468 sgd_solver.cpp:105] Iteration 7968, lr = 0.00206316
I0428 18:14:22.421262 8468 solver.cpp:218] Iteration 7980 (2.17736 iter/s, 5.51126s/12 iters), loss = 0.155861
I0428 18:14:22.421314 8468 solver.cpp:237] Train net output #0: loss = 0.155861 (* 1 = 0.155861 loss)
I0428 18:14:22.421325 8468 sgd_solver.cpp:105] Iteration 7980, lr = 0.00205826
I0428 18:14:27.076161 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:14:27.853905 8468 solver.cpp:218] Iteration 7992 (2.20898 iter/s, 5.43236s/12 iters), loss = 0.106269
I0428 18:14:27.853947 8468 solver.cpp:237] Train net output #0: loss = 0.106269 (* 1 = 0.106269 loss)
I0428 18:14:27.853955 8468 sgd_solver.cpp:105] Iteration 7992, lr = 0.00205337
I0428 18:14:33.552950 8468 solver.cpp:218] Iteration 8004 (2.10572 iter/s, 5.69876s/12 iters), loss = 0.0957698
I0428 18:14:33.553000 8468 solver.cpp:237] Train net output #0: loss = 0.0957698 (* 1 = 0.0957698 loss)
I0428 18:14:33.553014 8468 sgd_solver.cpp:105] Iteration 8004, lr = 0.0020485
I0428 18:14:38.893476 8468 solver.cpp:218] Iteration 8016 (2.24709 iter/s, 5.34025s/12 iters), loss = 0.175921
I0428 18:14:38.893523 8468 solver.cpp:237] Train net output #0: loss = 0.175921 (* 1 = 0.175921 loss)
I0428 18:14:38.893537 8468 sgd_solver.cpp:105] Iteration 8016, lr = 0.00204363
I0428 18:14:44.274850 8468 solver.cpp:218] Iteration 8028 (2.23003 iter/s, 5.3811s/12 iters), loss = 0.106018
I0428 18:14:44.274888 8468 solver.cpp:237] Train net output #0: loss = 0.106018 (* 1 = 0.106018 loss)
I0428 18:14:44.274896 8468 sgd_solver.cpp:105] Iteration 8028, lr = 0.00203878
I0428 18:14:49.740633 8468 solver.cpp:218] Iteration 8040 (2.19559 iter/s, 5.46551s/12 iters), loss = 0.200159
I0428 18:14:49.740780 8468 solver.cpp:237] Train net output #0: loss = 0.200159 (* 1 = 0.200159 loss)
I0428 18:14:49.740794 8468 sgd_solver.cpp:105] Iteration 8040, lr = 0.00203394
I0428 18:14:55.236843 8468 solver.cpp:218] Iteration 8052 (2.18347 iter/s, 5.49583s/12 iters), loss = 0.0606009
I0428 18:14:55.236886 8468 solver.cpp:237] Train net output #0: loss = 0.0606009 (* 1 = 0.0606009 loss)
I0428 18:14:55.236894 8468 sgd_solver.cpp:105] Iteration 8052, lr = 0.00202911
I0428 18:14:57.401146 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel
I0428 18:14:59.616083 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate
I0428 18:15:00.089463 8468 solver.cpp:330] Iteration 8058, Testing net (#0)
I0428 18:15:00.089483 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:15:01.355072 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:15:04.840754 8468 solver.cpp:397] Test net output #0: accuracy = 0.449755
I0428 18:15:04.840786 8468 solver.cpp:397] Test net output #1: loss = 3.7133 (* 1 = 3.7133 loss)
I0428 18:15:06.807904 8468 solver.cpp:218] Iteration 8064 (1.03712 iter/s, 11.5705s/12 iters), loss = 0.213291
I0428 18:15:06.807955 8468 solver.cpp:237] Train net output #0: loss = 0.213291 (* 1 = 0.213291 loss)
I0428 18:15:06.807991 8468 sgd_solver.cpp:105] Iteration 8064, lr = 0.00202429
I0428 18:15:12.218634 8468 solver.cpp:218] Iteration 8076 (2.21793 iter/s, 5.41045s/12 iters), loss = 0.140587
I0428 18:15:12.218683 8468 solver.cpp:237] Train net output #0: loss = 0.140587 (* 1 = 0.140587 loss)
I0428 18:15:12.218695 8468 sgd_solver.cpp:105] Iteration 8076, lr = 0.00201949
I0428 18:15:17.660218 8468 solver.cpp:218] Iteration 8088 (2.20535 iter/s, 5.4413s/12 iters), loss = 0.158648
I0428 18:15:17.660255 8468 solver.cpp:237] Train net output #0: loss = 0.158648 (* 1 = 0.158648 loss)
I0428 18:15:17.660264 8468 sgd_solver.cpp:105] Iteration 8088, lr = 0.00201469
I0428 18:15:19.154857 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:15:23.100922 8468 solver.cpp:218] Iteration 8100 (2.20571 iter/s, 5.44044s/12 iters), loss = 0.16467
I0428 18:15:23.101233 8468 solver.cpp:237] Train net output #0: loss = 0.16467 (* 1 = 0.16467 loss)
I0428 18:15:23.101243 8468 sgd_solver.cpp:105] Iteration 8100, lr = 0.00200991
I0428 18:15:28.488370 8468 solver.cpp:218] Iteration 8112 (2.22762 iter/s, 5.38691s/12 iters), loss = 0.168017
I0428 18:15:28.488407 8468 solver.cpp:237] Train net output #0: loss = 0.168017 (* 1 = 0.168017 loss)
I0428 18:15:28.488418 8468 sgd_solver.cpp:105] Iteration 8112, lr = 0.00200514
I0428 18:15:34.004758 8468 solver.cpp:218] Iteration 8124 (2.17545 iter/s, 5.51611s/12 iters), loss = 0.0879743
I0428 18:15:34.004798 8468 solver.cpp:237] Train net output #0: loss = 0.0879743 (* 1 = 0.0879743 loss)
I0428 18:15:34.004807 8468 sgd_solver.cpp:105] Iteration 8124, lr = 0.00200038
I0428 18:15:39.754794 8468 solver.cpp:218] Iteration 8136 (2.08705 iter/s, 5.74975s/12 iters), loss = 0.104225
I0428 18:15:39.754844 8468 solver.cpp:237] Train net output #0: loss = 0.104225 (* 1 = 0.104225 loss)
I0428 18:15:39.754860 8468 sgd_solver.cpp:105] Iteration 8136, lr = 0.00199563
I0428 18:15:45.144354 8468 solver.cpp:218] Iteration 8148 (2.22664 iter/s, 5.38928s/12 iters), loss = 0.216089
I0428 18:15:45.144393 8468 solver.cpp:237] Train net output #0: loss = 0.21609 (* 1 = 0.21609 loss)
I0428 18:15:45.144404 8468 sgd_solver.cpp:105] Iteration 8148, lr = 0.00199089
I0428 18:15:50.135839 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel
I0428 18:15:51.039075 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate
I0428 18:15:51.550385 8468 solver.cpp:330] Iteration 8160, Testing net (#0)
I0428 18:15:51.550405 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:15:52.724870 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:15:56.062176 8468 solver.cpp:397] Test net output #0: accuracy = 0.459559
I0428 18:15:56.062328 8468 solver.cpp:397] Test net output #1: loss = 3.59275 (* 1 = 3.59275 loss)
I0428 18:15:56.194576 8468 solver.cpp:218] Iteration 8160 (1.086 iter/s, 11.0497s/12 iters), loss = 0.104472
I0428 18:15:56.194618 8468 solver.cpp:237] Train net output #0: loss = 0.104472 (* 1 = 0.104472 loss)
I0428 18:15:56.194628 8468 sgd_solver.cpp:105] Iteration 8160, lr = 0.00198616
I0428 18:16:00.774523 8468 solver.cpp:218] Iteration 8172 (2.62025 iter/s, 4.57971s/12 iters), loss = 0.0949376
I0428 18:16:00.774564 8468 solver.cpp:237] Train net output #0: loss = 0.0949376 (* 1 = 0.0949376 loss)
I0428 18:16:00.774574 8468 sgd_solver.cpp:105] Iteration 8172, lr = 0.00198145
I0428 18:16:06.336133 8468 solver.cpp:218] Iteration 8184 (2.15776 iter/s, 5.56133s/12 iters), loss = 0.103707
I0428 18:16:06.336174 8468 solver.cpp:237] Train net output #0: loss = 0.103707 (* 1 = 0.103707 loss)
I0428 18:16:06.336184 8468 sgd_solver.cpp:105] Iteration 8184, lr = 0.00197674
I0428 18:16:10.195322 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:16:11.761174 8468 solver.cpp:218] Iteration 8196 (2.21208 iter/s, 5.42477s/12 iters), loss = 0.213378
I0428 18:16:11.761224 8468 solver.cpp:237] Train net output #0: loss = 0.213378 (* 1 = 0.213378 loss)
I0428 18:16:11.761236 8468 sgd_solver.cpp:105] Iteration 8196, lr = 0.00197205
I0428 18:16:17.199298 8468 solver.cpp:218] Iteration 8208 (2.20676 iter/s, 5.43785s/12 iters), loss = 0.137655
I0428 18:16:17.199339 8468 solver.cpp:237] Train net output #0: loss = 0.137655 (* 1 = 0.137655 loss)
I0428 18:16:17.199348 8468 sgd_solver.cpp:105] Iteration 8208, lr = 0.00196737
I0428 18:16:22.640398 8468 solver.cpp:218] Iteration 8220 (2.20556 iter/s, 5.4408s/12 iters), loss = 0.0951256
I0428 18:16:22.640446 8468 solver.cpp:237] Train net output #0: loss = 0.0951257 (* 1 = 0.0951257 loss)
I0428 18:16:22.640460 8468 sgd_solver.cpp:105] Iteration 8220, lr = 0.0019627
I0428 18:16:28.066934 8468 solver.cpp:218] Iteration 8232 (2.21147 iter/s, 5.42626s/12 iters), loss = 0.163846
I0428 18:16:28.067235 8468 solver.cpp:237] Train net output #0: loss = 0.163846 (* 1 = 0.163846 loss)
I0428 18:16:28.067246 8468 sgd_solver.cpp:105] Iteration 8232, lr = 0.00195804
I0428 18:16:33.780146 8468 solver.cpp:218] Iteration 8244 (2.10059 iter/s, 5.71267s/12 iters), loss = 0.311337
I0428 18:16:33.780190 8468 solver.cpp:237] Train net output #0: loss = 0.311337 (* 1 = 0.311337 loss)
I0428 18:16:33.780200 8468 sgd_solver.cpp:105] Iteration 8244, lr = 0.00195339
I0428 18:16:39.242928 8468 solver.cpp:218] Iteration 8256 (2.19679 iter/s, 5.4625s/12 iters), loss = 0.0533028
I0428 18:16:39.242972 8468 solver.cpp:237] Train net output #0: loss = 0.0533028 (* 1 = 0.0533028 loss)
I0428 18:16:39.242981 8468 sgd_solver.cpp:105] Iteration 8256, lr = 0.00194875
I0428 18:16:41.425487 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel
I0428 18:16:42.015281 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate
I0428 18:16:42.450250 8468 solver.cpp:330] Iteration 8262, Testing net (#0)
I0428 18:16:42.450271 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:16:43.737465 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:16:47.205375 8468 solver.cpp:397] Test net output #0: accuracy = 0.4375
I0428 18:16:47.205413 8468 solver.cpp:397] Test net output #1: loss = 3.77688 (* 1 = 3.77688 loss)
I0428 18:16:49.107982 8468 solver.cpp:218] Iteration 8268 (1.21647 iter/s, 9.8646s/12 iters), loss = 0.0630831
I0428 18:16:49.108026 8468 solver.cpp:237] Train net output #0: loss = 0.0630831 (* 1 = 0.0630831 loss)
I0428 18:16:49.108036 8468 sgd_solver.cpp:105] Iteration 8268, lr = 0.00194412
I0428 18:16:54.553380 8468 solver.cpp:218] Iteration 8280 (2.20381 iter/s, 5.44512s/12 iters), loss = 0.17053
I0428 18:16:54.553437 8468 solver.cpp:237] Train net output #0: loss = 0.17053 (* 1 = 0.17053 loss)
I0428 18:16:54.553452 8468 sgd_solver.cpp:105] Iteration 8280, lr = 0.00193951
I0428 18:16:59.880242 8468 solver.cpp:218] Iteration 8292 (2.25285 iter/s, 5.32658s/12 iters), loss = 0.114944
I0428 18:16:59.880406 8468 solver.cpp:237] Train net output #0: loss = 0.114944 (* 1 = 0.114944 loss)
I0428 18:16:59.880417 8468 sgd_solver.cpp:105] Iteration 8292, lr = 0.0019349
I0428 18:17:00.679932 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:17:05.585566 8468 solver.cpp:218] Iteration 8304 (2.10345 iter/s, 5.70492s/12 iters), loss = 0.170216
I0428 18:17:05.585618 8468 solver.cpp:237] Train net output #0: loss = 0.170216 (* 1 = 0.170216 loss)
I0428 18:17:05.585629 8468 sgd_solver.cpp:105] Iteration 8304, lr = 0.00193031
I0428 18:17:07.447225 8468 blocking_queue.cpp:49] Waiting for data
I0428 18:17:11.110246 8468 solver.cpp:218] Iteration 8316 (2.17218 iter/s, 5.52439s/12 iters), loss = 0.149733
I0428 18:17:11.110286 8468 solver.cpp:237] Train net output #0: loss = 0.149733 (* 1 = 0.149733 loss)
I0428 18:17:11.110296 8468 sgd_solver.cpp:105] Iteration 8316, lr = 0.00192573
I0428 18:17:16.436734 8468 solver.cpp:218] Iteration 8328 (2.25301 iter/s, 5.32622s/12 iters), loss = 0.126862
I0428 18:17:16.436791 8468 solver.cpp:237] Train net output #0: loss = 0.126862 (* 1 = 0.126862 loss)
I0428 18:17:16.436803 8468 sgd_solver.cpp:105] Iteration 8328, lr = 0.00192115
I0428 18:17:21.754343 8468 solver.cpp:218] Iteration 8340 (2.25677 iter/s, 5.31733s/12 iters), loss = 0.0928029
I0428 18:17:21.754392 8468 solver.cpp:237] Train net output #0: loss = 0.0928029 (* 1 = 0.0928029 loss)
I0428 18:17:21.754405 8468 sgd_solver.cpp:105] Iteration 8340, lr = 0.00191659
I0428 18:17:27.072163 8468 solver.cpp:218] Iteration 8352 (2.25668 iter/s, 5.31755s/12 iters), loss = 0.204227
I0428 18:17:27.072221 8468 solver.cpp:237] Train net output #0: loss = 0.204227 (* 1 = 0.204227 loss)
I0428 18:17:27.072234 8468 sgd_solver.cpp:105] Iteration 8352, lr = 0.00191204
I0428 18:17:31.864423 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel
I0428 18:17:34.842550 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate
I0428 18:17:36.830654 8468 solver.cpp:330] Iteration 8364, Testing net (#0)
I0428 18:17:36.830673 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:17:37.994112 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:17:41.421569 8468 solver.cpp:397] Test net output #0: accuracy = 0.444853
I0428 18:17:41.421610 8468 solver.cpp:397] Test net output #1: loss = 3.68074 (* 1 = 3.68074 loss)
I0428 18:17:41.546959 8468 solver.cpp:218] Iteration 8364 (0.829064 iter/s, 14.4741s/12 iters), loss = 0.10777
I0428 18:17:41.547009 8468 solver.cpp:237] Train net output #0: loss = 0.10777 (* 1 = 0.10777 loss)
I0428 18:17:41.547022 8468 sgd_solver.cpp:105] Iteration 8364, lr = 0.0019075
I0428 18:17:46.065860 8468 solver.cpp:218] Iteration 8376 (2.65566 iter/s, 4.51866s/12 iters), loss = 0.0877378
I0428 18:17:46.065902 8468 solver.cpp:237] Train net output #0: loss = 0.0877378 (* 1 = 0.0877378 loss)
I0428 18:17:46.065912 8468 sgd_solver.cpp:105] Iteration 8376, lr = 0.00190297
I0428 18:17:51.780046 8468 solver.cpp:218] Iteration 8388 (2.10014 iter/s, 5.7139s/12 iters), loss = 0.202565
I0428 18:17:51.780084 8468 solver.cpp:237] Train net output #0: loss = 0.202565 (* 1 = 0.202565 loss)
I0428 18:17:51.780093 8468 sgd_solver.cpp:105] Iteration 8388, lr = 0.00189846
I0428 18:17:54.801250 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:17:57.160145 8468 solver.cpp:218] Iteration 8400 (2.23055 iter/s, 5.37983s/12 iters), loss = 0.200196
I0428 18:17:57.160185 8468 solver.cpp:237] Train net output #0: loss = 0.200196 (* 1 = 0.200196 loss)
I0428 18:17:57.160194 8468 sgd_solver.cpp:105] Iteration 8400, lr = 0.00189395
I0428 18:18:02.740175 8468 solver.cpp:218] Iteration 8412 (2.15063 iter/s, 5.57975s/12 iters), loss = 0.126678
I0428 18:18:02.742506 8468 solver.cpp:237] Train net output #0: loss = 0.126678 (* 1 = 0.126678 loss)
I0428 18:18:02.742519 8468 sgd_solver.cpp:105] Iteration 8412, lr = 0.00188945
I0428 18:18:08.208248 8468 solver.cpp:218] Iteration 8424 (2.19559 iter/s, 5.46551s/12 iters), loss = 0.24558
I0428 18:18:08.208302 8468 solver.cpp:237] Train net output #0: loss = 0.24558 (* 1 = 0.24558 loss)
I0428 18:18:08.208314 8468 sgd_solver.cpp:105] Iteration 8424, lr = 0.00188497
I0428 18:18:13.754648 8468 solver.cpp:218] Iteration 8436 (2.16368 iter/s, 5.54611s/12 iters), loss = 0.206044
I0428 18:18:13.754699 8468 solver.cpp:237] Train net output #0: loss = 0.206044 (* 1 = 0.206044 loss)
I0428 18:18:13.754712 8468 sgd_solver.cpp:105] Iteration 8436, lr = 0.00188049
I0428 18:18:19.410465 8468 solver.cpp:218] Iteration 8448 (2.12182 iter/s, 5.65552s/12 iters), loss = 0.214765
I0428 18:18:19.410503 8468 solver.cpp:237] Train net output #0: loss = 0.214765 (* 1 = 0.214765 loss)
I0428 18:18:19.410512 8468 sgd_solver.cpp:105] Iteration 8448, lr = 0.00187603
I0428 18:18:24.869962 8468 solver.cpp:218] Iteration 8460 (2.19812 iter/s, 5.45922s/12 iters), loss = 0.113494
I0428 18:18:24.870012 8468 solver.cpp:237] Train net output #0: loss = 0.113494 (* 1 = 0.113494 loss)
I0428 18:18:24.870024 8468 sgd_solver.cpp:105] Iteration 8460, lr = 0.00187157
I0428 18:18:27.174854 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel
I0428 18:18:27.788139 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate
I0428 18:18:28.218590 8468 solver.cpp:330] Iteration 8466, Testing net (#0)
I0428 18:18:28.218611 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:18:29.385613 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:18:32.932407 8468 solver.cpp:397] Test net output #0: accuracy = 0.448529
I0428 18:18:32.932550 8468 solver.cpp:397] Test net output #1: loss = 3.56376 (* 1 = 3.56376 loss)
I0428 18:18:35.036587 8468 solver.cpp:218] Iteration 8472 (1.18039 iter/s, 10.1662s/12 iters), loss = 0.123284
I0428 18:18:35.036628 8468 solver.cpp:237] Train net output #0: loss = 0.123284 (* 1 = 0.123284 loss)
I0428 18:18:35.036638 8468 sgd_solver.cpp:105] Iteration 8472, lr = 0.00186713
I0428 18:18:40.522289 8468 solver.cpp:218] Iteration 8484 (2.18761 iter/s, 5.48543s/12 iters), loss = 0.126472
I0428 18:18:40.522327 8468 solver.cpp:237] Train net output #0: loss = 0.126472 (* 1 = 0.126472 loss)
I0428 18:18:40.522336 8468 sgd_solver.cpp:105] Iteration 8484, lr = 0.0018627
I0428 18:18:46.003150 8468 solver.cpp:218] Iteration 8496 (2.18955 iter/s, 5.48059s/12 iters), loss = 0.11628
I0428 18:18:46.003190 8468 solver.cpp:237] Train net output #0: loss = 0.11628 (* 1 = 0.11628 loss)
I0428 18:18:46.003199 8468 sgd_solver.cpp:105] Iteration 8496, lr = 0.00185827
I0428 18:18:46.044162 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:18:51.543071 8468 solver.cpp:218] Iteration 8508 (2.16621 iter/s, 5.53964s/12 iters), loss = 0.122272
I0428 18:18:51.543119 8468 solver.cpp:237] Train net output #0: loss = 0.122272 (* 1 = 0.122272 loss)
I0428 18:18:51.543133 8468 sgd_solver.cpp:105] Iteration 8508, lr = 0.00185386
I0428 18:18:56.987577 8468 solver.cpp:218] Iteration 8520 (2.20417 iter/s, 5.44423s/12 iters), loss = 0.146132
I0428 18:18:56.987628 8468 solver.cpp:237] Train net output #0: loss = 0.146132 (* 1 = 0.146132 loss)
I0428 18:18:56.987640 8468 sgd_solver.cpp:105] Iteration 8520, lr = 0.00184946
I0428 18:19:02.445546 8468 solver.cpp:218] Iteration 8532 (2.19874 iter/s, 5.45768s/12 iters), loss = 0.127459
I0428 18:19:02.445602 8468 solver.cpp:237] Train net output #0: loss = 0.127459 (* 1 = 0.127459 loss)
I0428 18:19:02.445616 8468 sgd_solver.cpp:105] Iteration 8532, lr = 0.00184507
I0428 18:19:07.850167 8468 solver.cpp:218] Iteration 8544 (2.22044 iter/s, 5.40434s/12 iters), loss = 0.094348
I0428 18:19:07.851887 8468 solver.cpp:237] Train net output #0: loss = 0.094348 (* 1 = 0.094348 loss)
I0428 18:19:07.851902 8468 sgd_solver.cpp:105] Iteration 8544, lr = 0.00184069
I0428 18:19:13.378906 8468 solver.cpp:218] Iteration 8556 (2.17125 iter/s, 5.52678s/12 iters), loss = 0.130748
I0428 18:19:13.378947 8468 solver.cpp:237] Train net output #0: loss = 0.130748 (* 1 = 0.130748 loss)
I0428 18:19:13.378958 8468 sgd_solver.cpp:105] Iteration 8556, lr = 0.00183632
I0428 18:19:18.235560 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel
I0428 18:19:18.831163 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate
I0428 18:19:19.287426 8468 solver.cpp:330] Iteration 8568, Testing net (#0)
I0428 18:19:19.287451 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:19:20.463259 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:19:24.090878 8468 solver.cpp:397] Test net output #0: accuracy = 0.456495
I0428 18:19:24.090917 8468 solver.cpp:397] Test net output #1: loss = 3.68266 (* 1 = 3.68266 loss)
I0428 18:19:24.222934 8468 solver.cpp:218] Iteration 8568 (1.10665 iter/s, 10.8435s/12 iters), loss = 0.0788408
I0428 18:19:24.222977 8468 solver.cpp:237] Train net output #0: loss = 0.0788408 (* 1 = 0.0788408 loss)
I0428 18:19:24.222986 8468 sgd_solver.cpp:105] Iteration 8568, lr = 0.00183196
I0428 18:19:29.010996 8468 solver.cpp:218] Iteration 8580 (2.50637 iter/s, 4.78781s/12 iters), loss = 0.204331
I0428 18:19:29.011045 8468 solver.cpp:237] Train net output #0: loss = 0.204331 (* 1 = 0.204331 loss)
I0428 18:19:29.011057 8468 sgd_solver.cpp:105] Iteration 8580, lr = 0.00182761
I0428 18:19:34.611786 8468 solver.cpp:218] Iteration 8592 (2.14267 iter/s, 5.6005s/12 iters), loss = 0.160912
I0428 18:19:34.611825 8468 solver.cpp:237] Train net output #0: loss = 0.160912 (* 1 = 0.160912 loss)
I0428 18:19:34.611835 8468 sgd_solver.cpp:105] Iteration 8592, lr = 0.00182327
I0428 18:19:36.929754 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:19:40.016367 8468 solver.cpp:218] Iteration 8604 (2.22045 iter/s, 5.40431s/12 iters), loss = 0.0456946
I0428 18:19:40.016520 8468 solver.cpp:237] Train net output #0: loss = 0.0456946 (* 1 = 0.0456946 loss)
I0428 18:19:40.016532 8468 sgd_solver.cpp:105] Iteration 8604, lr = 0.00181894
I0428 18:19:45.385658 8468 solver.cpp:218] Iteration 8616 (2.23508 iter/s, 5.36893s/12 iters), loss = 0.151901
I0428 18:19:45.385718 8468 solver.cpp:237] Train net output #0: loss = 0.151901 (* 1 = 0.151901 loss)
I0428 18:19:45.385731 8468 sgd_solver.cpp:105] Iteration 8616, lr = 0.00181462
I0428 18:19:50.792248 8468 solver.cpp:218] Iteration 8628 (2.21963 iter/s, 5.4063s/12 iters), loss = 0.174435
I0428 18:19:50.792287 8468 solver.cpp:237] Train net output #0: loss = 0.174436 (* 1 = 0.174436 loss)
I0428 18:19:50.792297 8468 sgd_solver.cpp:105] Iteration 8628, lr = 0.00181031
I0428 18:19:56.268230 8468 solver.cpp:218] Iteration 8640 (2.1915 iter/s, 5.4757s/12 iters), loss = 0.0903176
I0428 18:19:56.268286 8468 solver.cpp:237] Train net output #0: loss = 0.0903176 (* 1 = 0.0903176 loss)
I0428 18:19:56.268301 8468 sgd_solver.cpp:105] Iteration 8640, lr = 0.00180602
I0428 18:20:01.905751 8468 solver.cpp:218] Iteration 8652 (2.12871 iter/s, 5.63722s/12 iters), loss = 0.127434
I0428 18:20:01.905791 8468 solver.cpp:237] Train net output #0: loss = 0.127434 (* 1 = 0.127434 loss)
I0428 18:20:01.905800 8468 sgd_solver.cpp:105] Iteration 8652, lr = 0.00180173
I0428 18:20:07.524119 8468 solver.cpp:218] Iteration 8664 (2.13596 iter/s, 5.61809s/12 iters), loss = 0.194039
I0428 18:20:07.524160 8468 solver.cpp:237] Train net output #0: loss = 0.194039 (* 1 = 0.194039 loss)
I0428 18:20:07.524169 8468 sgd_solver.cpp:105] Iteration 8664, lr = 0.00179745
I0428 18:20:09.763949 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel
I0428 18:20:11.390866 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate
I0428 18:20:13.343274 8468 solver.cpp:330] Iteration 8670, Testing net (#0)
I0428 18:20:13.343297 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:20:14.365799 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:20:18.061638 8468 solver.cpp:397] Test net output #0: accuracy = 0.450368
I0428 18:20:18.061677 8468 solver.cpp:397] Test net output #1: loss = 3.77044 (* 1 = 3.77044 loss)
I0428 18:20:20.074259 8468 solver.cpp:218] Iteration 8676 (0.956207 iter/s, 12.5496s/12 iters), loss = 0.119689
I0428 18:20:20.074331 8468 solver.cpp:237] Train net output #0: loss = 0.119689 (* 1 = 0.119689 loss)
I0428 18:20:20.074345 8468 sgd_solver.cpp:105] Iteration 8676, lr = 0.00179318
I0428 18:20:25.580116 8468 solver.cpp:218] Iteration 8688 (2.17962 iter/s, 5.50555s/12 iters), loss = 0.0874789
I0428 18:20:25.580166 8468 solver.cpp:237] Train net output #0: loss = 0.087479 (* 1 = 0.087479 loss)
I0428 18:20:25.580179 8468 sgd_solver.cpp:105] Iteration 8688, lr = 0.00178893
I0428 18:20:30.322980 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:20:31.083916 8468 solver.cpp:218] Iteration 8700 (2.18042 iter/s, 5.50352s/12 iters), loss = 0.165308
I0428 18:20:31.083966 8468 solver.cpp:237] Train net output #0: loss = 0.165309 (* 1 = 0.165309 loss)
I0428 18:20:31.083976 8468 sgd_solver.cpp:105] Iteration 8700, lr = 0.00178468
I0428 18:20:36.605342 8468 solver.cpp:218] Iteration 8712 (2.17346 iter/s, 5.52114s/12 iters), loss = 0.14242
I0428 18:20:36.605396 8468 solver.cpp:237] Train net output #0: loss = 0.14242 (* 1 = 0.14242 loss)
I0428 18:20:36.605408 8468 sgd_solver.cpp:105] Iteration 8712, lr = 0.00178044
I0428 18:20:42.297425 8468 solver.cpp:218] Iteration 8724 (2.1083 iter/s, 5.69179s/12 iters), loss = 0.113357
I0428 18:20:42.297623 8468 solver.cpp:237] Train net output #0: loss = 0.113357 (* 1 = 0.113357 loss)
I0428 18:20:42.297632 8468 sgd_solver.cpp:105] Iteration 8724, lr = 0.00177621
I0428 18:20:47.578248 8468 solver.cpp:218] Iteration 8736 (2.27256 iter/s, 5.2804s/12 iters), loss = 0.0752215
I0428 18:20:47.578302 8468 solver.cpp:237] Train net output #0: loss = 0.0752216 (* 1 = 0.0752216 loss)
I0428 18:20:47.578316 8468 sgd_solver.cpp:105] Iteration 8736, lr = 0.001772
I0428 18:20:53.016769 8468 solver.cpp:218] Iteration 8748 (2.2066 iter/s, 5.43824s/12 iters), loss = 0.0635986
I0428 18:20:53.016808 8468 solver.cpp:237] Train net output #0: loss = 0.0635987 (* 1 = 0.0635987 loss)
I0428 18:20:53.016817 8468 sgd_solver.cpp:105] Iteration 8748, lr = 0.00176779
I0428 18:20:58.424741 8468 solver.cpp:218] Iteration 8760 (2.21906 iter/s, 5.4077s/12 iters), loss = 0.116993
I0428 18:20:58.424782 8468 solver.cpp:237] Train net output #0: loss = 0.116993 (* 1 = 0.116993 loss)
I0428 18:20:58.424793 8468 sgd_solver.cpp:105] Iteration 8760, lr = 0.00176359
I0428 18:21:03.308761 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel
I0428 18:21:03.900913 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate
I0428 18:21:04.357877 8468 solver.cpp:330] Iteration 8772, Testing net (#0)
I0428 18:21:04.357898 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:21:05.388607 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:21:09.230118 8468 solver.cpp:397] Test net output #0: accuracy = 0.46201
I0428 18:21:09.230160 8468 solver.cpp:397] Test net output #1: loss = 3.64208 (* 1 = 3.64208 loss)
I0428 18:21:09.361946 8468 solver.cpp:218] Iteration 8772 (1.09722 iter/s, 10.9367s/12 iters), loss = 0.134019
I0428 18:21:09.361987 8468 solver.cpp:237] Train net output #0: loss = 0.134019 (* 1 = 0.134019 loss)
I0428 18:21:09.361999 8468 sgd_solver.cpp:105] Iteration 8772, lr = 0.00175941
I0428 18:21:13.794185 8468 solver.cpp:218] Iteration 8784 (2.70758 iter/s, 4.432s/12 iters), loss = 0.0797514
I0428 18:21:13.794363 8468 solver.cpp:237] Train net output #0: loss = 0.0797514 (* 1 = 0.0797514 loss)
I0428 18:21:13.794378 8468 sgd_solver.cpp:105] Iteration 8784, lr = 0.00175523
I0428 18:21:19.381525 8468 solver.cpp:218] Iteration 8796 (2.14787 iter/s, 5.58693s/12 iters), loss = 0.0622259
I0428 18:21:19.381570 8468 solver.cpp:237] Train net output #0: loss = 0.062226 (* 1 = 0.062226 loss)
I0428 18:21:19.381580 8468 sgd_solver.cpp:105] Iteration 8796, lr = 0.00175106
I0428 18:21:20.957549 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:21:24.808706 8468 solver.cpp:218] Iteration 8808 (2.21121 iter/s, 5.4269s/12 iters), loss = 0.0841762
I0428 18:21:24.808753 8468 solver.cpp:237] Train net output #0: loss = 0.0841763 (* 1 = 0.0841763 loss)
I0428 18:21:24.808763 8468 sgd_solver.cpp:105] Iteration 8808, lr = 0.0017469
I0428 18:21:30.208125 8468 solver.cpp:218] Iteration 8820 (2.22257 iter/s, 5.39914s/12 iters), loss = 0.226731
I0428 18:21:30.208168 8468 solver.cpp:237] Train net output #0: loss = 0.226731 (* 1 = 0.226731 loss)
I0428 18:21:30.208176 8468 sgd_solver.cpp:105] Iteration 8820, lr = 0.00174276
I0428 18:21:35.725581 8468 solver.cpp:218] Iteration 8832 (2.17503 iter/s, 5.51718s/12 iters), loss = 0.0588538
I0428 18:21:35.725632 8468 solver.cpp:237] Train net output #0: loss = 0.0588539 (* 1 = 0.0588539 loss)
I0428 18:21:35.725646 8468 sgd_solver.cpp:105] Iteration 8832, lr = 0.00173862
I0428 18:21:41.299705 8468 solver.cpp:218] Iteration 8844 (2.15292 iter/s, 5.57383s/12 iters), loss = 0.0537387
I0428 18:21:41.299748 8468 solver.cpp:237] Train net output #0: loss = 0.0537388 (* 1 = 0.0537388 loss)
I0428 18:21:41.299759 8468 sgd_solver.cpp:105] Iteration 8844, lr = 0.00173449
I0428 18:21:46.995190 8468 solver.cpp:218] Iteration 8856 (2.10704 iter/s, 5.69519s/12 iters), loss = 0.0624841
I0428 18:21:47.005407 8468 solver.cpp:237] Train net output #0: loss = 0.0624842 (* 1 = 0.0624842 loss)
I0428 18:21:47.005422 8468 sgd_solver.cpp:105] Iteration 8856, lr = 0.00173037
I0428 18:21:52.531540 8468 solver.cpp:218] Iteration 8868 (2.17159 iter/s, 5.52591s/12 iters), loss = 0.131487
I0428 18:21:52.531589 8468 solver.cpp:237] Train net output #0: loss = 0.131487 (* 1 = 0.131487 loss)
I0428 18:21:52.531600 8468 sgd_solver.cpp:105] Iteration 8868, lr = 0.00172626
I0428 18:21:54.859486 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel
I0428 18:21:56.354972 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate
I0428 18:21:56.889910 8468 solver.cpp:330] Iteration 8874, Testing net (#0)
I0428 18:21:56.889930 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:21:57.996836 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:22:02.258539 8468 solver.cpp:397] Test net output #0: accuracy = 0.461397
I0428 18:22:02.258579 8468 solver.cpp:397] Test net output #1: loss = 3.66665 (* 1 = 3.66665 loss)
I0428 18:22:04.360944 8468 solver.cpp:218] Iteration 8880 (1.01447 iter/s, 11.8289s/12 iters), loss = 0.0371151
I0428 18:22:04.360998 8468 solver.cpp:237] Train net output #0: loss = 0.0371152 (* 1 = 0.0371152 loss)
I0428 18:22:04.361011 8468 sgd_solver.cpp:105] Iteration 8880, lr = 0.00172217
I0428 18:22:10.130014 8468 solver.cpp:218] Iteration 8892 (2.08017 iter/s, 5.76877s/12 iters), loss = 0.0241191
I0428 18:22:10.130065 8468 solver.cpp:237] Train net output #0: loss = 0.0241192 (* 1 = 0.0241192 loss)
I0428 18:22:10.130079 8468 sgd_solver.cpp:105] Iteration 8892, lr = 0.00171808
I0428 18:22:14.097849 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:22:15.794857 8468 solver.cpp:218] Iteration 8904 (2.11843 iter/s, 5.66457s/12 iters), loss = 0.172889
I0428 18:22:15.794898 8468 solver.cpp:237] Train net output #0: loss = 0.172889 (* 1 = 0.172889 loss)
I0428 18:22:15.794906 8468 sgd_solver.cpp:105] Iteration 8904, lr = 0.001714
I0428 18:22:21.539752 8468 solver.cpp:218] Iteration 8916 (2.08891 iter/s, 5.74463s/12 iters), loss = 0.0785297
I0428 18:22:21.539929 8468 solver.cpp:237] Train net output #0: loss = 0.0785298 (* 1 = 0.0785298 loss)
I0428 18:22:21.539942 8468 sgd_solver.cpp:105] Iteration 8916, lr = 0.00170993
I0428 18:22:27.623243 8468 solver.cpp:218] Iteration 8928 (1.97269 iter/s, 6.08308s/12 iters), loss = 0.0619127
I0428 18:22:27.623299 8468 solver.cpp:237] Train net output #0: loss = 0.0619128 (* 1 = 0.0619128 loss)
I0428 18:22:27.623314 8468 sgd_solver.cpp:105] Iteration 8928, lr = 0.00170587
I0428 18:22:33.378705 8468 solver.cpp:218] Iteration 8940 (2.08508 iter/s, 5.75518s/12 iters), loss = 0.0987291
I0428 18:22:33.378746 8468 solver.cpp:237] Train net output #0: loss = 0.0987292 (* 1 = 0.0987292 loss)
I0428 18:22:33.378754 8468 sgd_solver.cpp:105] Iteration 8940, lr = 0.00170182
I0428 18:22:39.386538 8468 solver.cpp:218] Iteration 8952 (1.99749 iter/s, 6.00755s/12 iters), loss = 0.101934
I0428 18:22:39.386597 8468 solver.cpp:237] Train net output #0: loss = 0.101934 (* 1 = 0.101934 loss)
I0428 18:22:39.386611 8468 sgd_solver.cpp:105] Iteration 8952, lr = 0.00169778
I0428 18:22:45.319981 8468 solver.cpp:218] Iteration 8964 (2.02254 iter/s, 5.93315s/12 iters), loss = 0.0283864
I0428 18:22:45.320039 8468 solver.cpp:237] Train net output #0: loss = 0.0283865 (* 1 = 0.0283865 loss)
I0428 18:22:45.320051 8468 sgd_solver.cpp:105] Iteration 8964, lr = 0.00169375
I0428 18:22:50.723948 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel
I0428 18:22:51.362571 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate
I0428 18:22:51.805100 8468 solver.cpp:330] Iteration 8976, Testing net (#0)
I0428 18:22:51.805182 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:22:52.843451 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:22:57.178902 8468 solver.cpp:397] Test net output #0: accuracy = 0.447304
I0428 18:22:57.178941 8468 solver.cpp:397] Test net output #1: loss = 3.79255 (* 1 = 3.79255 loss)
I0428 18:22:57.310250 8468 solver.cpp:218] Iteration 8976 (1.00085 iter/s, 11.9898s/12 iters), loss = 0.149799
I0428 18:22:57.310297 8468 solver.cpp:237] Train net output #0: loss = 0.149799 (* 1 = 0.149799 loss)
I0428 18:22:57.310309 8468 sgd_solver.cpp:105] Iteration 8976, lr = 0.00168973
I0428 18:23:02.460325 8468 solver.cpp:218] Iteration 8988 (2.33018 iter/s, 5.14982s/12 iters), loss = 0.118435
I0428 18:23:02.460381 8468 solver.cpp:237] Train net output #0: loss = 0.118435 (* 1 = 0.118435 loss)
I0428 18:23:02.460393 8468 sgd_solver.cpp:105] Iteration 8988, lr = 0.00168571
I0428 18:23:04.846048 8468 blocking_queue.cpp:49] Waiting for data
I0428 18:23:08.411001 8468 solver.cpp:218] Iteration 9000 (2.01668 iter/s, 5.95039s/12 iters), loss = 0.0334523
I0428 18:23:08.417047 8468 solver.cpp:237] Train net output #0: loss = 0.0334524 (* 1 = 0.0334524 loss)
I0428 18:23:08.417062 8468 sgd_solver.cpp:105] Iteration 9000, lr = 0.00168171
I0428 18:23:09.335213 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:23:14.488185 8468 solver.cpp:218] Iteration 9012 (1.97664 iter/s, 6.0709s/12 iters), loss = 0.119307
I0428 18:23:14.488238 8468 solver.cpp:237] Train net output #0: loss = 0.119307 (* 1 = 0.119307 loss)
I0428 18:23:14.488250 8468 sgd_solver.cpp:105] Iteration 9012, lr = 0.00167772
I0428 18:23:20.656283 8468 solver.cpp:218] Iteration 9024 (1.94559 iter/s, 6.1678s/12 iters), loss = 0.0733395
I0428 18:23:20.656340 8468 solver.cpp:237] Train net output #0: loss = 0.0733396 (* 1 = 0.0733396 loss)
I0428 18:23:20.656352 8468 sgd_solver.cpp:105] Iteration 9024, lr = 0.00167374
I0428 18:23:26.729873 8468 solver.cpp:218] Iteration 9036 (1.97586 iter/s, 6.0733s/12 iters), loss = 0.103789
I0428 18:23:26.731585 8468 solver.cpp:237] Train net output #0: loss = 0.103789 (* 1 = 0.103789 loss)
I0428 18:23:26.731596 8468 sgd_solver.cpp:105] Iteration 9036, lr = 0.00166976
I0428 18:23:32.561287 8468 solver.cpp:218] Iteration 9048 (2.05851 iter/s, 5.82947s/12 iters), loss = 0.0759551
I0428 18:23:32.561338 8468 solver.cpp:237] Train net output #0: loss = 0.0759552 (* 1 = 0.0759552 loss)
I0428 18:23:32.561349 8468 sgd_solver.cpp:105] Iteration 9048, lr = 0.0016658
I0428 18:23:38.675026 8468 solver.cpp:218] Iteration 9060 (1.96289 iter/s, 6.11345s/12 iters), loss = 0.0228899
I0428 18:23:38.675071 8468 solver.cpp:237] Train net output #0: loss = 0.02289 (* 1 = 0.02289 loss)
I0428 18:23:38.675081 8468 sgd_solver.cpp:105] Iteration 9060, lr = 0.00166184
I0428 18:23:44.379904 8468 solver.cpp:218] Iteration 9072 (2.10356 iter/s, 5.7046s/12 iters), loss = 0.109525
I0428 18:23:44.379956 8468 solver.cpp:237] Train net output #0: loss = 0.109525 (* 1 = 0.109525 loss)
I0428 18:23:44.379968 8468 sgd_solver.cpp:105] Iteration 9072, lr = 0.0016579
I0428 18:23:47.019018 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel
I0428 18:23:47.651906 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate
I0428 18:23:48.102721 8468 solver.cpp:330] Iteration 9078, Testing net (#0)
I0428 18:23:48.102746 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:23:49.146541 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:23:53.506635 8468 solver.cpp:397] Test net output #0: accuracy = 0.466299
I0428 18:23:53.506675 8468 solver.cpp:397] Test net output #1: loss = 3.68386 (* 1 = 3.68386 loss)
I0428 18:23:55.704375 8468 solver.cpp:218] Iteration 9084 (1.0597 iter/s, 11.324s/12 iters), loss = 0.11829
I0428 18:23:55.704430 8468 solver.cpp:237] Train net output #0: loss = 0.118291 (* 1 = 0.118291 loss)
I0428 18:23:55.704442 8468 sgd_solver.cpp:105] Iteration 9084, lr = 0.00165396
I0428 18:24:01.938244 8468 solver.cpp:218] Iteration 9096 (1.92506 iter/s, 6.23357s/12 iters), loss = 0.0533628
I0428 18:24:01.938354 8468 solver.cpp:237] Train net output #0: loss = 0.0533629 (* 1 = 0.0533629 loss)
I0428 18:24:01.938364 8468 sgd_solver.cpp:105] Iteration 9096, lr = 0.00165003
I0428 18:24:05.484892 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:24:07.960232 8468 solver.cpp:218] Iteration 9108 (1.99281 iter/s, 6.02164s/12 iters), loss = 0.0209832
I0428 18:24:07.960281 8468 solver.cpp:237] Train net output #0: loss = 0.0209833 (* 1 = 0.0209833 loss)
I0428 18:24:07.960292 8468 sgd_solver.cpp:105] Iteration 9108, lr = 0.00164612
I0428 18:24:13.859011 8468 solver.cpp:218] Iteration 9120 (2.03442 iter/s, 5.89849s/12 iters), loss = 0.0994926
I0428 18:24:13.859061 8468 solver.cpp:237] Train net output #0: loss = 0.0994927 (* 1 = 0.0994927 loss)
I0428 18:24:13.859074 8468 sgd_solver.cpp:105] Iteration 9120, lr = 0.00164221
I0428 18:24:19.992087 8468 solver.cpp:218] Iteration 9132 (1.9567 iter/s, 6.13278s/12 iters), loss = 0.144034
I0428 18:24:19.992141 8468 solver.cpp:237] Train net output #0: loss = 0.144034 (* 1 = 0.144034 loss)
I0428 18:24:19.992152 8468 sgd_solver.cpp:105] Iteration 9132, lr = 0.00163831
I0428 18:24:26.180371 8468 solver.cpp:218] Iteration 9144 (1.93924 iter/s, 6.18798s/12 iters), loss = 0.0779942
I0428 18:24:26.180418 8468 solver.cpp:237] Train net output #0: loss = 0.0779943 (* 1 = 0.0779943 loss)
I0428 18:24:26.180428 8468 sgd_solver.cpp:105] Iteration 9144, lr = 0.00163442
I0428 18:24:32.059079 8468 solver.cpp:218] Iteration 9156 (2.04136 iter/s, 5.87842s/12 iters), loss = 0.103713
I0428 18:24:32.059219 8468 solver.cpp:237] Train net output #0: loss = 0.103713 (* 1 = 0.103713 loss)
I0428 18:24:32.059231 8468 sgd_solver.cpp:105] Iteration 9156, lr = 0.00163054
I0428 18:24:38.113371 8468 solver.cpp:218] Iteration 9168 (1.98219 iter/s, 6.05391s/12 iters), loss = 0.137435
I0428 18:24:38.113413 8468 solver.cpp:237] Train net output #0: loss = 0.137435 (* 1 = 0.137435 loss)
I0428 18:24:38.113421 8468 sgd_solver.cpp:105] Iteration 9168, lr = 0.00162667
I0428 18:24:43.565750 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel
I0428 18:24:47.097218 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate
I0428 18:24:48.055088 8468 solver.cpp:330] Iteration 9180, Testing net (#0)
I0428 18:24:48.055114 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:24:49.055020 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:24:53.531551 8468 solver.cpp:397] Test net output #0: accuracy = 0.46201
I0428 18:24:53.531586 8468 solver.cpp:397] Test net output #1: loss = 3.72533 (* 1 = 3.72533 loss)
I0428 18:24:53.661054 8468 solver.cpp:218] Iteration 9180 (0.771851 iter/s, 15.547s/12 iters), loss = 0.0877608
I0428 18:24:53.661105 8468 solver.cpp:237] Train net output #0: loss = 0.087761 (* 1 = 0.087761 loss)
I0428 18:24:53.661118 8468 sgd_solver.cpp:105] Iteration 9180, lr = 0.00162281
I0428 18:24:58.513936 8468 solver.cpp:218] Iteration 9192 (2.47289 iter/s, 4.85263s/12 iters), loss = 0.0372935
I0428 18:24:58.513988 8468 solver.cpp:237] Train net output #0: loss = 0.0372936 (* 1 = 0.0372936 loss)
I0428 18:24:58.513998 8468 sgd_solver.cpp:105] Iteration 9192, lr = 0.00161895
I0428 18:25:04.687774 8468 solver.cpp:218] Iteration 9204 (1.94378 iter/s, 6.17354s/12 iters), loss = 0.108151
I0428 18:25:04.688736 8468 solver.cpp:237] Train net output #0: loss = 0.108151 (* 1 = 0.108151 loss)
I0428 18:25:04.688748 8468 sgd_solver.cpp:105] Iteration 9204, lr = 0.00161511
I0428 18:25:04.773365 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:25:10.509151 8468 solver.cpp:218] Iteration 9216 (2.06179 iter/s, 5.82018s/12 iters), loss = 0.0928542
I0428 18:25:10.509193 8468 solver.cpp:237] Train net output #0: loss = 0.0928543 (* 1 = 0.0928543 loss)
I0428 18:25:10.509203 8468 sgd_solver.cpp:105] Iteration 9216, lr = 0.00161128
I0428 18:25:16.715400 8468 solver.cpp:218] Iteration 9228 (1.93363 iter/s, 6.20595s/12 iters), loss = 0.113143
I0428 18:25:16.715454 8468 solver.cpp:237] Train net output #0: loss = 0.113144 (* 1 = 0.113144 loss)
I0428 18:25:16.715464 8468 sgd_solver.cpp:105] Iteration 9228, lr = 0.00160745
I0428 18:25:22.798393 8468 solver.cpp:218] Iteration 9240 (1.97281 iter/s, 6.0827s/12 iters), loss = 0.0523536
I0428 18:25:22.804556 8468 solver.cpp:237] Train net output #0: loss = 0.0523538 (* 1 = 0.0523538 loss)
I0428 18:25:22.804569 8468 sgd_solver.cpp:105] Iteration 9240, lr = 0.00160363
I0428 18:25:28.607152 8468 solver.cpp:218] Iteration 9252 (2.06812 iter/s, 5.80236s/12 iters), loss = 0.077052
I0428 18:25:28.607208 8468 solver.cpp:237] Train net output #0: loss = 0.0770521 (* 1 = 0.0770521 loss)
I0428 18:25:28.607221 8468 sgd_solver.cpp:105] Iteration 9252, lr = 0.00159983
I0428 18:25:34.546466 8468 solver.cpp:218] Iteration 9264 (2.02054 iter/s, 5.93902s/12 iters), loss = 0.0854699
I0428 18:25:34.546515 8468 solver.cpp:237] Train net output #0: loss = 0.08547 (* 1 = 0.08547 loss)
I0428 18:25:34.546526 8468 sgd_solver.cpp:105] Iteration 9264, lr = 0.00159603
I0428 18:25:40.574338 8468 solver.cpp:218] Iteration 9276 (1.99085 iter/s, 6.02758s/12 iters), loss = 0.0331302
I0428 18:25:40.578680 8468 solver.cpp:237] Train net output #0: loss = 0.0331303 (* 1 = 0.0331303 loss)
I0428 18:25:40.578694 8468 sgd_solver.cpp:105] Iteration 9276, lr = 0.00159224
I0428 18:25:42.857929 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel
I0428 18:25:45.061125 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate
I0428 18:25:46.082229 8468 solver.cpp:330] Iteration 9282, Testing net (#0)
I0428 18:25:46.082250 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:25:46.961756 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:25:51.574683 8468 solver.cpp:397] Test net output #0: accuracy = 0.465074
I0428 18:25:51.574714 8468 solver.cpp:397] Test net output #1: loss = 3.76599 (* 1 = 3.76599 loss)
I0428 18:25:53.641914 8468 solver.cpp:218] Iteration 9288 (0.918644 iter/s, 13.0627s/12 iters), loss = 0.0485559
I0428 18:25:53.641969 8468 solver.cpp:237] Train net output #0: loss = 0.048556 (* 1 = 0.048556 loss)
I0428 18:25:53.641981 8468 sgd_solver.cpp:105] Iteration 9288, lr = 0.00158846
I0428 18:25:59.519171 8468 solver.cpp:218] Iteration 9300 (2.04187 iter/s, 5.87696s/12 iters), loss = 0.116344
I0428 18:25:59.519215 8468 solver.cpp:237] Train net output #0: loss = 0.116344 (* 1 = 0.116344 loss)
I0428 18:25:59.519225 8468 sgd_solver.cpp:105] Iteration 9300, lr = 0.00158469
I0428 18:26:02.046128 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:26:05.393575 8468 solver.cpp:218] Iteration 9312 (2.04286 iter/s, 5.87412s/12 iters), loss = 0.0929097
I0428 18:26:05.401423 8468 solver.cpp:237] Train net output #0: loss = 0.0929099 (* 1 = 0.0929099 loss)
I0428 18:26:05.401448 8468 sgd_solver.cpp:105] Iteration 9312, lr = 0.00158092
I0428 18:26:11.278354 8468 solver.cpp:218] Iteration 9324 (2.04196 iter/s, 5.87671s/12 iters), loss = 0.0391375
I0428 18:26:11.281658 8468 solver.cpp:237] Train net output #0: loss = 0.0391376 (* 1 = 0.0391376 loss)
I0428 18:26:11.281674 8468 sgd_solver.cpp:105] Iteration 9324, lr = 0.00157717
I0428 18:26:17.233115 8468 solver.cpp:218] Iteration 9336 (2.01639 iter/s, 5.95122s/12 iters), loss = 0.0980633
I0428 18:26:17.233170 8468 solver.cpp:237] Train net output #0: loss = 0.0980635 (* 1 = 0.0980635 loss)
I0428 18:26:17.233180 8468 sgd_solver.cpp:105] Iteration 9336, lr = 0.00157343
I0428 18:26:23.359448 8468 solver.cpp:218] Iteration 9348 (1.95886 iter/s, 6.12603s/12 iters), loss = 0.0444608
I0428 18:26:23.359500 8468 solver.cpp:237] Train net output #0: loss = 0.0444609 (* 1 = 0.0444609 loss)
I0428 18:26:23.359513 8468 sgd_solver.cpp:105] Iteration 9348, lr = 0.00156969
I0428 18:26:29.333783 8468 solver.cpp:218] Iteration 9360 (2.00869 iter/s, 5.97404s/12 iters), loss = 0.0857369
I0428 18:26:29.333838 8468 solver.cpp:237] Train net output #0: loss = 0.085737 (* 1 = 0.085737 loss)
I0428 18:26:29.333849 8468 sgd_solver.cpp:105] Iteration 9360, lr = 0.00156596
I0428 18:26:35.291177 8468 solver.cpp:218] Iteration 9372 (2.0144 iter/s, 5.95709s/12 iters), loss = 0.0822514
I0428 18:26:35.291220 8468 solver.cpp:237] Train net output #0: loss = 0.0822516 (* 1 = 0.0822516 loss)
I0428 18:26:35.291229 8468 sgd_solver.cpp:105] Iteration 9372, lr = 0.00156225
I0428 18:26:40.427073 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel
I0428 18:26:41.044888 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate
I0428 18:26:41.468546 8468 solver.cpp:330] Iteration 9384, Testing net (#0)
I0428 18:26:41.468617 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:26:42.362437 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:26:46.721096 8468 solver.cpp:397] Test net output #0: accuracy = 0.461397
I0428 18:26:46.721124 8468 solver.cpp:397] Test net output #1: loss = 3.68429 (* 1 = 3.68429 loss)
I0428 18:26:46.847702 8468 solver.cpp:218] Iteration 9384 (1.03842 iter/s, 11.556s/12 iters), loss = 0.0923721
I0428 18:26:46.847764 8468 solver.cpp:237] Train net output #0: loss = 0.0923722 (* 1 = 0.0923722 loss)
I0428 18:26:46.847779 8468 sgd_solver.cpp:105] Iteration 9384, lr = 0.00155854
I0428 18:26:51.902545 8468 solver.cpp:218] Iteration 9396 (2.37409 iter/s, 5.05458s/12 iters), loss = 0.08998
I0428 18:26:51.902585 8468 solver.cpp:237] Train net output #0: loss = 0.0899801 (* 1 = 0.0899801 loss)
I0428 18:26:51.902593 8468 sgd_solver.cpp:105] Iteration 9396, lr = 0.00155484
I0428 18:26:57.039300 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:26:57.848752 8468 solver.cpp:218] Iteration 9408 (2.01819 iter/s, 5.94592s/12 iters), loss = 0.117764
I0428 18:26:57.848798 8468 solver.cpp:237] Train net output #0: loss = 0.117764 (* 1 = 0.117764 loss)
I0428 18:26:57.848805 8468 sgd_solver.cpp:105] Iteration 9408, lr = 0.00155114
I0428 18:27:03.832065 8468 solver.cpp:218] Iteration 9420 (2.00567 iter/s, 5.98302s/12 iters), loss = 0.0203846
I0428 18:27:03.832106 8468 solver.cpp:237] Train net output #0: loss = 0.0203848 (* 1 = 0.0203848 loss)
I0428 18:27:03.832116 8468 sgd_solver.cpp:105] Iteration 9420, lr = 0.00154746
I0428 18:27:09.934024 8468 solver.cpp:218] Iteration 9432 (1.96668 iter/s, 6.10167s/12 iters), loss = 0.102909
I0428 18:27:09.934067 8468 solver.cpp:237] Train net output #0: loss = 0.102909 (* 1 = 0.102909 loss)
I0428 18:27:09.934075 8468 sgd_solver.cpp:105] Iteration 9432, lr = 0.00154379
I0428 18:27:15.799728 8468 solver.cpp:218] Iteration 9444 (2.04589 iter/s, 5.86542s/12 iters), loss = 0.0455787
I0428 18:27:15.799913 8468 solver.cpp:237] Train net output #0: loss = 0.0455788 (* 1 = 0.0455788 loss)
I0428 18:27:15.799927 8468 sgd_solver.cpp:105] Iteration 9444, lr = 0.00154012
I0428 18:27:21.855486 8468 solver.cpp:218] Iteration 9456 (1.98172 iter/s, 6.05533s/12 iters), loss = 0.0882428
I0428 18:27:21.855538 8468 solver.cpp:237] Train net output #0: loss = 0.0882429 (* 1 = 0.0882429 loss)
I0428 18:27:21.855551 8468 sgd_solver.cpp:105] Iteration 9456, lr = 0.00153647
I0428 18:27:27.329180 8468 solver.cpp:218] Iteration 9468 (2.19241 iter/s, 5.47342s/12 iters), loss = 0.0339181
I0428 18:27:27.329231 8468 solver.cpp:237] Train net output #0: loss = 0.0339182 (* 1 = 0.0339182 loss)
I0428 18:27:27.329241 8468 sgd_solver.cpp:105] Iteration 9468, lr = 0.00153282
I0428 18:27:32.899821 8468 solver.cpp:218] Iteration 9480 (2.15426 iter/s, 5.57036s/12 iters), loss = 0.106641
I0428 18:27:32.899863 8468 solver.cpp:237] Train net output #0: loss = 0.106641 (* 1 = 0.106641 loss)
I0428 18:27:32.899879 8468 sgd_solver.cpp:105] Iteration 9480, lr = 0.00152918
I0428 18:27:35.188558 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel
I0428 18:27:36.480132 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate
I0428 18:27:38.172428 8468 solver.cpp:330] Iteration 9486, Testing net (#0)
I0428 18:27:38.172449 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:27:38.904312 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:27:43.295074 8468 solver.cpp:397] Test net output #0: accuracy = 0.466299
I0428 18:27:43.295106 8468 solver.cpp:397] Test net output #1: loss = 3.5948 (* 1 = 3.5948 loss)
I0428 18:27:45.348790 8468 solver.cpp:218] Iteration 9492 (0.963976 iter/s, 12.4484s/12 iters), loss = 0.0633654
I0428 18:27:45.348845 8468 solver.cpp:237] Train net output #0: loss = 0.0633655 (* 1 = 0.0633655 loss)
I0428 18:27:45.348860 8468 sgd_solver.cpp:105] Iteration 9492, lr = 0.00152555
I0428 18:27:51.085269 8468 solver.cpp:218] Iteration 9504 (2.09198 iter/s, 5.73619s/12 iters), loss = 0.0543767
I0428 18:27:51.100231 8468 solver.cpp:237] Train net output #0: loss = 0.0543768 (* 1 = 0.0543768 loss)
I0428 18:27:51.100244 8468 sgd_solver.cpp:105] Iteration 9504, lr = 0.00152193
I0428 18:27:52.890158 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:27:57.016309 8468 solver.cpp:218] Iteration 9516 (2.02845 iter/s, 5.91584s/12 iters), loss = 0.101924
I0428 18:27:57.016369 8468 solver.cpp:237] Train net output #0: loss = 0.101924 (* 1 = 0.101924 loss)
I0428 18:27:57.016381 8468 sgd_solver.cpp:105] Iteration 9516, lr = 0.00151831
I0428 18:28:02.735494 8468 solver.cpp:218] Iteration 9528 (2.09831 iter/s, 5.71889s/12 iters), loss = 0.0670236
I0428 18:28:02.735555 8468 solver.cpp:237] Train net output #0: loss = 0.0670238 (* 1 = 0.0670238 loss)
I0428 18:28:02.735566 8468 sgd_solver.cpp:105] Iteration 9528, lr = 0.00151471
I0428 18:28:08.539294 8468 solver.cpp:218] Iteration 9540 (2.06772 iter/s, 5.8035s/12 iters), loss = 0.0660224
I0428 18:28:08.539336 8468 solver.cpp:237] Train net output #0: loss = 0.0660226 (* 1 = 0.0660226 loss)
I0428 18:28:08.539346 8468 sgd_solver.cpp:105] Iteration 9540, lr = 0.00151111
I0428 18:28:14.528988 8468 solver.cpp:218] Iteration 9552 (2.00354 iter/s, 5.9894s/12 iters), loss = 0.0925418
I0428 18:28:14.529055 8468 solver.cpp:237] Train net output #0: loss = 0.092542 (* 1 = 0.092542 loss)
I0428 18:28:14.529071 8468 sgd_solver.cpp:105] Iteration 9552, lr = 0.00150752
I0428 18:28:20.310144 8468 solver.cpp:218] Iteration 9564 (2.07582 iter/s, 5.78085s/12 iters), loss = 0.0853169
I0428 18:28:20.310201 8468 solver.cpp:237] Train net output #0: loss = 0.0853171 (* 1 = 0.0853171 loss)
I0428 18:28:20.310214 8468 sgd_solver.cpp:105] Iteration 9564, lr = 0.00150395
I0428 18:28:26.288060 8468 solver.cpp:218] Iteration 9576 (2.00749 iter/s, 5.97762s/12 iters), loss = 0.0465749
I0428 18:28:26.288201 8468 solver.cpp:237] Train net output #0: loss = 0.0465751 (* 1 = 0.0465751 loss)
I0428 18:28:26.288213 8468 sgd_solver.cpp:105] Iteration 9576, lr = 0.00150037
I0428 18:28:31.209264 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel
I0428 18:28:31.847236 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate
I0428 18:28:32.292920 8468 solver.cpp:330] Iteration 9588, Testing net (#0)
I0428 18:28:32.292940 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:28:33.004135 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:28:37.506085 8468 solver.cpp:397] Test net output #0: accuracy = 0.469363
I0428 18:28:37.506125 8468 solver.cpp:397] Test net output #1: loss = 3.71066 (* 1 = 3.71066 loss)
I0428 18:28:37.633163 8468 solver.cpp:218] Iteration 9588 (1.05778 iter/s, 11.3445s/12 iters), loss = 0.0226783
I0428 18:28:37.633203 8468 solver.cpp:237] Train net output #0: loss = 0.0226785 (* 1 = 0.0226785 loss)
I0428 18:28:37.633214 8468 sgd_solver.cpp:105] Iteration 9588, lr = 0.00149681
I0428 18:28:42.253960 8468 solver.cpp:218] Iteration 9600 (2.59709 iter/s, 4.62056s/12 iters), loss = 0.0405999
I0428 18:28:42.254022 8468 solver.cpp:237] Train net output #0: loss = 0.0406001 (* 1 = 0.0406001 loss)
I0428 18:28:42.254034 8468 sgd_solver.cpp:105] Iteration 9600, lr = 0.00149326
I0428 18:28:46.178720 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:28:47.853448 8468 solver.cpp:218] Iteration 9612 (2.14316 iter/s, 5.5992s/12 iters), loss = 0.072067
I0428 18:28:47.853497 8468 solver.cpp:237] Train net output #0: loss = 0.0720672 (* 1 = 0.0720672 loss)
I0428 18:28:47.853508 8468 sgd_solver.cpp:105] Iteration 9612, lr = 0.00148971
I0428 18:28:53.583539 8468 solver.cpp:218] Iteration 9624 (2.09431 iter/s, 5.7298s/12 iters), loss = 0.0773489
I0428 18:28:53.583580 8468 solver.cpp:237] Train net output #0: loss = 0.077349 (* 1 = 0.077349 loss)
I0428 18:28:53.583588 8468 sgd_solver.cpp:105] Iteration 9624, lr = 0.00148618
I0428 18:28:59.183306 8468 solver.cpp:218] Iteration 9636 (2.14305 iter/s, 5.5995s/12 iters), loss = 0.117475
I0428 18:28:59.183408 8468 solver.cpp:237] Train net output #0: loss = 0.117475 (* 1 = 0.117475 loss)
I0428 18:28:59.183418 8468 sgd_solver.cpp:105] Iteration 9636, lr = 0.00148265
I0428 18:29:04.842689 8468 solver.cpp:218] Iteration 9648 (2.1205 iter/s, 5.65905s/12 iters), loss = 0.124064
I0428 18:29:04.842758 8468 solver.cpp:237] Train net output #0: loss = 0.124064 (* 1 = 0.124064 loss)
I0428 18:29:04.842770 8468 sgd_solver.cpp:105] Iteration 9648, lr = 0.00147913
I0428 18:29:10.539288 8468 solver.cpp:218] Iteration 9660 (2.10663 iter/s, 5.6963s/12 iters), loss = 0.129108
I0428 18:29:10.539330 8468 solver.cpp:237] Train net output #0: loss = 0.129109 (* 1 = 0.129109 loss)
I0428 18:29:10.539341 8468 sgd_solver.cpp:105] Iteration 9660, lr = 0.00147562
I0428 18:29:16.170012 8468 solver.cpp:218] Iteration 9672 (2.13127 iter/s, 5.63045s/12 iters), loss = 0.0510295
I0428 18:29:16.170053 8468 solver.cpp:237] Train net output #0: loss = 0.0510296 (* 1 = 0.0510296 loss)
I0428 18:29:16.170061 8468 sgd_solver.cpp:105] Iteration 9672, lr = 0.00147211
I0428 18:29:21.788218 8468 solver.cpp:218] Iteration 9684 (2.13602 iter/s, 5.61794s/12 iters), loss = 0.0375033
I0428 18:29:21.788259 8468 solver.cpp:237] Train net output #0: loss = 0.0375034 (* 1 = 0.0375034 loss)
I0428 18:29:21.788267 8468 sgd_solver.cpp:105] Iteration 9684, lr = 0.00146862
I0428 18:29:24.047195 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel
I0428 18:29:25.491814 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate
I0428 18:29:26.486366 8468 solver.cpp:330] Iteration 9690, Testing net (#0)
I0428 18:29:26.486384 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:29:27.053489 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:29:29.742089 8468 blocking_queue.cpp:49] Waiting for data
I0428 18:29:31.063481 8468 solver.cpp:397] Test net output #0: accuracy = 0.449142
I0428 18:29:31.063516 8468 solver.cpp:397] Test net output #1: loss = 3.82165 (* 1 = 3.82165 loss)
I0428 18:29:32.943084 8468 solver.cpp:218] Iteration 9696 (1.07581 iter/s, 11.1544s/12 iters), loss = 0.0556669
I0428 18:29:32.943125 8468 solver.cpp:237] Train net output #0: loss = 0.055667 (* 1 = 0.055667 loss)
I0428 18:29:32.943135 8468 sgd_solver.cpp:105] Iteration 9696, lr = 0.00146513
I0428 18:29:38.514267 8468 solver.cpp:218] Iteration 9708 (2.15405 iter/s, 5.57091s/12 iters), loss = 0.0218287
I0428 18:29:38.514309 8468 solver.cpp:237] Train net output #0: loss = 0.0218289 (* 1 = 0.0218289 loss)
I0428 18:29:38.514319 8468 sgd_solver.cpp:105] Iteration 9708, lr = 0.00146165
I0428 18:29:39.394882 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:29:44.114703 8468 solver.cpp:218] Iteration 9720 (2.14279 iter/s, 5.60016s/12 iters), loss = 0.0111182
I0428 18:29:44.114763 8468 solver.cpp:237] Train net output #0: loss = 0.0111184 (* 1 = 0.0111184 loss)
I0428 18:29:44.114773 8468 sgd_solver.cpp:105] Iteration 9720, lr = 0.00145818
I0428 18:29:49.552269 8468 solver.cpp:218] Iteration 9732 (2.20699 iter/s, 5.43728s/12 iters), loss = 0.0321503
I0428 18:29:49.552320 8468 solver.cpp:237] Train net output #0: loss = 0.0321505 (* 1 = 0.0321505 loss)
I0428 18:29:49.552331 8468 sgd_solver.cpp:105] Iteration 9732, lr = 0.00145472
I0428 18:29:55.152994 8468 solver.cpp:218] Iteration 9744 (2.14269 iter/s, 5.60045s/12 iters), loss = 0.0187347
I0428 18:29:55.153031 8468 solver.cpp:237] Train net output #0: loss = 0.0187348 (* 1 = 0.0187348 loss)
I0428 18:29:55.153041 8468 sgd_solver.cpp:105] Iteration 9744, lr = 0.00145127
I0428 18:30:00.650941 8468 solver.cpp:218] Iteration 9756 (2.18274 iter/s, 5.49768s/12 iters), loss = 0.0452748
I0428 18:30:00.651062 8468 solver.cpp:237] Train net output #0: loss = 0.0452749 (* 1 = 0.0452749 loss)
I0428 18:30:00.651075 8468 sgd_solver.cpp:105] Iteration 9756, lr = 0.00144782
I0428 18:30:06.403512 8468 solver.cpp:218] Iteration 9768 (2.08615 iter/s, 5.75221s/12 iters), loss = 0.129603
I0428 18:30:06.403568 8468 solver.cpp:237] Train net output #0: loss = 0.129603 (* 1 = 0.129603 loss)
I0428 18:30:06.403581 8468 sgd_solver.cpp:105] Iteration 9768, lr = 0.00144438
I0428 18:30:11.878780 8468 solver.cpp:218] Iteration 9780 (2.19179 iter/s, 5.47498s/12 iters), loss = 0.0362101
I0428 18:30:11.885059 8468 solver.cpp:237] Train net output #0: loss = 0.0362103 (* 1 = 0.0362103 loss)
I0428 18:30:11.885083 8468 sgd_solver.cpp:105] Iteration 9780, lr = 0.00144095
I0428 18:30:16.832168 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel
I0428 18:30:18.012881 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate
I0428 18:30:21.461824 8468 solver.cpp:330] Iteration 9792, Testing net (#0)
I0428 18:30:21.461845 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:30:22.102672 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:30:26.278259 8468 solver.cpp:397] Test net output #0: accuracy = 0.463848
I0428 18:30:26.278292 8468 solver.cpp:397] Test net output #1: loss = 3.87764 (* 1 = 3.87764 loss)
I0428 18:30:26.407627 8468 solver.cpp:218] Iteration 9792 (0.826332 iter/s, 14.522s/12 iters), loss = 0.0428353
I0428 18:30:26.407672 8468 solver.cpp:237] Train net output #0: loss = 0.0428355 (* 1 = 0.0428355 loss)
I0428 18:30:26.407682 8468 sgd_solver.cpp:105] Iteration 9792, lr = 0.00143753
I0428 18:30:30.878592 8468 solver.cpp:218] Iteration 9804 (2.68413 iter/s, 4.47072s/12 iters), loss = 0.104679
I0428 18:30:30.878756 8468 solver.cpp:237] Train net output #0: loss = 0.10468 (* 1 = 0.10468 loss)
I0428 18:30:30.878768 8468 sgd_solver.cpp:105] Iteration 9804, lr = 0.00143412
I0428 18:30:34.028630 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:30:36.236600 8468 solver.cpp:218] Iteration 9816 (2.2398 iter/s, 5.35762s/12 iters), loss = 0.0520696
I0428 18:30:36.236660 8468 solver.cpp:237] Train net output #0: loss = 0.0520697 (* 1 = 0.0520697 loss)
I0428 18:30:36.236673 8468 sgd_solver.cpp:105] Iteration 9816, lr = 0.00143072
I0428 18:30:41.691365 8468 solver.cpp:218] Iteration 9828 (2.20002 iter/s, 5.45449s/12 iters), loss = 0.0489511
I0428 18:30:41.691404 8468 solver.cpp:237] Train net output #0: loss = 0.0489513 (* 1 = 0.0489513 loss)
I0428 18:30:41.691412 8468 sgd_solver.cpp:105] Iteration 9828, lr = 0.00142732
I0428 18:30:47.104395 8468 solver.cpp:218] Iteration 9840 (2.21698 iter/s, 5.41277s/12 iters), loss = 0.0663962
I0428 18:30:47.104449 8468 solver.cpp:237] Train net output #0: loss = 0.0663963 (* 1 = 0.0663963 loss)
I0428 18:30:47.104462 8468 sgd_solver.cpp:105] Iteration 9840, lr = 0.00142393
I0428 18:30:52.611848 8468 solver.cpp:218] Iteration 9852 (2.17897 iter/s, 5.50718s/12 iters), loss = 0.0309977
I0428 18:30:52.611888 8468 solver.cpp:237] Train net output #0: loss = 0.0309978 (* 1 = 0.0309978 loss)
I0428 18:30:52.611897 8468 sgd_solver.cpp:105] Iteration 9852, lr = 0.00142055
I0428 18:30:58.106540 8468 solver.cpp:218] Iteration 9864 (2.18403 iter/s, 5.49442s/12 iters), loss = 0.0820104
I0428 18:30:58.106598 8468 solver.cpp:237] Train net output #0: loss = 0.0820105 (* 1 = 0.0820105 loss)
I0428 18:30:58.106611 8468 sgd_solver.cpp:105] Iteration 9864, lr = 0.00141718
I0428 18:31:03.416539 8468 solver.cpp:218] Iteration 9876 (2.26001 iter/s, 5.3097s/12 iters), loss = 0.0625292
I0428 18:31:03.416685 8468 solver.cpp:237] Train net output #0: loss = 0.0625293 (* 1 = 0.0625293 loss)
I0428 18:31:03.416698 8468 sgd_solver.cpp:105] Iteration 9876, lr = 0.00141381
I0428 18:31:08.832726 8468 solver.cpp:218] Iteration 9888 (2.21573 iter/s, 5.41582s/12 iters), loss = 0.0810568
I0428 18:31:08.832767 8468 solver.cpp:237] Train net output #0: loss = 0.081057 (* 1 = 0.081057 loss)
I0428 18:31:08.832777 8468 sgd_solver.cpp:105] Iteration 9888, lr = 0.00141045
I0428 18:31:11.016033 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel
I0428 18:31:12.576824 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate
I0428 18:31:13.474345 8468 solver.cpp:330] Iteration 9894, Testing net (#0)
I0428 18:31:13.474370 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:31:14.142401 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:31:18.292364 8468 solver.cpp:397] Test net output #0: accuracy = 0.460784
I0428 18:31:18.292402 8468 solver.cpp:397] Test net output #1: loss = 3.80192 (* 1 = 3.80192 loss)
I0428 18:31:20.345515 8468 solver.cpp:218] Iteration 9900 (1.04236 iter/s, 11.5123s/12 iters), loss = 0.121101
I0428 18:31:20.345556 8468 solver.cpp:237] Train net output #0: loss = 0.121101 (* 1 = 0.121101 loss)
I0428 18:31:20.345566 8468 sgd_solver.cpp:105] Iteration 9900, lr = 0.00140711
I0428 18:31:25.789103 8468 solver.cpp:218] Iteration 9912 (2.20454 iter/s, 5.44332s/12 iters), loss = 0.0633116
I0428 18:31:25.789147 8468 solver.cpp:237] Train net output #0: loss = 0.0633117 (* 1 = 0.0633117 loss)
I0428 18:31:25.789155 8468 sgd_solver.cpp:105] Iteration 9912, lr = 0.00140377
I0428 18:31:25.890193 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:31:31.231470 8468 solver.cpp:218] Iteration 9924 (2.20503 iter/s, 5.44209s/12 iters), loss = 0.0390234
I0428 18:31:31.231523 8468 solver.cpp:237] Train net output #0: loss = 0.0390235 (* 1 = 0.0390235 loss)
I0428 18:31:31.231536 8468 sgd_solver.cpp:105] Iteration 9924, lr = 0.00140043
I0428 18:31:36.637235 8468 solver.cpp:218] Iteration 9936 (2.21997 iter/s, 5.40548s/12 iters), loss = 0.0799755
I0428 18:31:36.637394 8468 solver.cpp:237] Train net output #0: loss = 0.0799756 (* 1 = 0.0799756 loss)
I0428 18:31:36.637408 8468 sgd_solver.cpp:105] Iteration 9936, lr = 0.00139711
I0428 18:31:42.133646 8468 solver.cpp:218] Iteration 9948 (2.18339 iter/s, 5.49603s/12 iters), loss = 0.213487
I0428 18:31:42.133682 8468 solver.cpp:237] Train net output #0: loss = 0.213487 (* 1 = 0.213487 loss)
I0428 18:31:42.133693 8468 sgd_solver.cpp:105] Iteration 9948, lr = 0.00139379
I0428 18:31:47.655464 8468 solver.cpp:218] Iteration 9960 (2.1733 iter/s, 5.52156s/12 iters), loss = 0.0804947
I0428 18:31:47.655501 8468 solver.cpp:237] Train net output #0: loss = 0.0804949 (* 1 = 0.0804949 loss)
I0428 18:31:47.655510 8468 sgd_solver.cpp:105] Iteration 9960, lr = 0.00139048
I0428 18:31:53.130744 8468 solver.cpp:218] Iteration 9972 (2.19177 iter/s, 5.47502s/12 iters), loss = 0.0882462
I0428 18:31:53.130784 8468 solver.cpp:237] Train net output #0: loss = 0.0882464 (* 1 = 0.0882464 loss)
I0428 18:31:53.130792 8468 sgd_solver.cpp:105] Iteration 9972, lr = 0.00138718
I0428 18:31:58.712998 8468 solver.cpp:218] Iteration 9984 (2.14978 iter/s, 5.58198s/12 iters), loss = 0.0381347
I0428 18:31:58.713057 8468 solver.cpp:237] Train net output #0: loss = 0.0381349 (* 1 = 0.0381349 loss)
I0428 18:31:58.713070 8468 sgd_solver.cpp:105] Iteration 9984, lr = 0.00138389
I0428 18:32:03.622781 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel
I0428 18:32:04.206394 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate
I0428 18:32:04.647881 8468 solver.cpp:330] Iteration 9996, Testing net (#0)
I0428 18:32:04.647899 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:32:05.145151 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:32:09.697656 8468 solver.cpp:397] Test net output #0: accuracy = 0.470588
I0428 18:32:09.697803 8468 solver.cpp:397] Test net output #1: loss = 3.76158 (* 1 = 3.76158 loss)
I0428 18:32:09.829000 8468 solver.cpp:218] Iteration 9996 (1.07957 iter/s, 11.1155s/12 iters), loss = 0.0717229
I0428 18:32:09.829051 8468 solver.cpp:237] Train net output #0: loss = 0.0717231 (* 1 = 0.0717231 loss)
I0428 18:32:09.829061 8468 sgd_solver.cpp:105] Iteration 9996, lr = 0.0013806
I0428 18:32:14.588714 8468 solver.cpp:218] Iteration 10008 (2.5213 iter/s, 4.75946s/12 iters), loss = 0.0903562
I0428 18:32:14.588771 8468 solver.cpp:237] Train net output #0: loss = 0.0903563 (* 1 = 0.0903563 loss)
I0428 18:32:14.588784 8468 sgd_solver.cpp:105] Iteration 10008, lr = 0.00137732
I0428 18:32:17.049795 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:32:20.093134 8468 solver.cpp:218] Iteration 10020 (2.18018 iter/s, 5.50414s/12 iters), loss = 0.0920812
I0428 18:32:20.093174 8468 solver.cpp:237] Train net output #0: loss = 0.0920813 (* 1 = 0.0920813 loss)
I0428 18:32:20.093183 8468 sgd_solver.cpp:105] Iteration 10020, lr = 0.00137405
I0428 18:32:25.404541 8468 solver.cpp:218] Iteration 10032 (2.2594 iter/s, 5.31114s/12 iters), loss = 0.0323462
I0428 18:32:25.404598 8468 solver.cpp:237] Train net output #0: loss = 0.0323463 (* 1 = 0.0323463 loss)
I0428 18:32:25.404613 8468 sgd_solver.cpp:105] Iteration 10032, lr = 0.00137079
I0428 18:32:31.214355 8468 solver.cpp:218] Iteration 10044 (2.06557 iter/s, 5.80952s/12 iters), loss = 0.0546715
I0428 18:32:31.214397 8468 solver.cpp:237] Train net output #0: loss = 0.0546716 (* 1 = 0.0546716 loss)
I0428 18:32:31.214406 8468 sgd_solver.cpp:105] Iteration 10044, lr = 0.00136754
I0428 18:32:36.645622 8468 solver.cpp:218] Iteration 10056 (2.20954 iter/s, 5.43099s/12 iters), loss = 0.0425496
I0428 18:32:36.645663 8468 solver.cpp:237] Train net output #0: loss = 0.0425497 (* 1 = 0.0425497 loss)
I0428 18:32:36.645673 8468 sgd_solver.cpp:105] Iteration 10056, lr = 0.00136429
I0428 18:32:42.191550 8468 solver.cpp:218] Iteration 10068 (2.16386 iter/s, 5.54566s/12 iters), loss = 0.0655215
I0428 18:32:42.191677 8468 solver.cpp:237] Train net output #0: loss = 0.0655216 (* 1 = 0.0655216 loss)
I0428 18:32:42.191687 8468 sgd_solver.cpp:105] Iteration 10068, lr = 0.00136105
I0428 18:32:47.681375 8468 solver.cpp:218] Iteration 10080 (2.186 iter/s, 5.48947s/12 iters), loss = 0.032362
I0428 18:32:47.681430 8468 solver.cpp:237] Train net output #0: loss = 0.0323621 (* 1 = 0.0323621 loss)
I0428 18:32:47.681444 8468 sgd_solver.cpp:105] Iteration 10080, lr = 0.00135782
I0428 18:32:53.041868 8468 solver.cpp:218] Iteration 10092 (2.23872 iter/s, 5.36022s/12 iters), loss = 0.0189454
I0428 18:32:53.041909 8468 solver.cpp:237] Train net output #0: loss = 0.0189455 (* 1 = 0.0189455 loss)
I0428 18:32:53.041918 8468 sgd_solver.cpp:105] Iteration 10092, lr = 0.0013546
I0428 18:32:55.250614 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel
I0428 18:32:55.868134 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate
I0428 18:32:57.884989 8468 solver.cpp:330] Iteration 10098, Testing net (#0)
I0428 18:32:57.885007 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:32:58.365599 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:33:02.582368 8468 solver.cpp:397] Test net output #0: accuracy = 0.465686
I0428 18:33:02.582396 8468 solver.cpp:397] Test net output #1: loss = 3.80638 (* 1 = 3.80638 loss)
I0428 18:33:04.535938 8468 solver.cpp:218] Iteration 10104 (1.04406 iter/s, 11.4936s/12 iters), loss = 0.0133017
I0428 18:33:04.535977 8468 solver.cpp:237] Train net output #0: loss = 0.0133018 (* 1 = 0.0133018 loss)
I0428 18:33:04.535985 8468 sgd_solver.cpp:105] Iteration 10104, lr = 0.00135138
I0428 18:33:09.369113 8481 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:33:10.061985 8468 solver.cpp:218] Iteration 10116 (2.17164 iter/s, 5.52577s/12 iters), loss = 0.105568
I0428 18:33:10.062041 8468 solver.cpp:237] Train net output #0: loss = 0.105568 (* 1 = 0.105568 loss)
I0428 18:33:10.062055 8468 sgd_solver.cpp:105] Iteration 10116, lr = 0.00134817
I0428 18:33:15.418115 8468 solver.cpp:218] Iteration 10128 (2.24054 iter/s, 5.35585s/12 iters), loss = 0.0647885
I0428 18:33:15.418248 8468 solver.cpp:237] Train net output #0: loss = 0.0647886 (* 1 = 0.0647886 loss)
I0428 18:33:15.418262 8468 sgd_solver.cpp:105] Iteration 10128, lr = 0.00134497
I0428 18:33:20.906349 8468 solver.cpp:218] Iteration 10140 (2.18664 iter/s, 5.48787s/12 iters), loss = 0.0230519
I0428 18:33:20.906399 8468 solver.cpp:237] Train net output #0: loss = 0.023052 (* 1 = 0.023052 loss)
I0428 18:33:20.906410 8468 sgd_solver.cpp:105] Iteration 10140, lr = 0.00134178
I0428 18:33:26.328599 8468 solver.cpp:218] Iteration 10152 (2.21322 iter/s, 5.42198s/12 iters), loss = 0.0217821
I0428 18:33:26.328639 8468 solver.cpp:237] Train net output #0: loss = 0.0217822 (* 1 = 0.0217822 loss)
I0428 18:33:26.328649 8468 sgd_solver.cpp:105] Iteration 10152, lr = 0.00133859
I0428 18:33:31.834997 8468 solver.cpp:218] Iteration 10164 (2.17939 iter/s, 5.50612s/12 iters), loss = 0.0989524
I0428 18:33:31.835050 8468 solver.cpp:237] Train net output #0: loss = 0.0989525 (* 1 = 0.0989525 loss)
I0428 18:33:31.835062 8468 sgd_solver.cpp:105] Iteration 10164, lr = 0.00133541
I0428 18:33:37.408255 8468 solver.cpp:218] Iteration 10176 (2.15325 iter/s, 5.57298s/12 iters), loss = 0.031199
I0428 18:33:37.408298 8468 solver.cpp:237] Train net output #0: loss = 0.031199 (* 1 = 0.031199 loss)
I0428 18:33:37.408306 8468 sgd_solver.cpp:105] Iteration 10176, lr = 0.00133224
I0428 18:33:42.791249 8468 solver.cpp:218] Iteration 10188 (2.22935 iter/s, 5.38273s/12 iters), loss = 0.077054
I0428 18:33:42.791287 8468 solver.cpp:237] Train net output #0: loss = 0.0770541 (* 1 = 0.0770541 loss)
I0428 18:33:42.791296 8468 sgd_solver.cpp:105] Iteration 10188, lr = 0.00132908
I0428 18:33:47.722312 8468 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel
I0428 18:33:48.673113 8468 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate
I0428 18:33:49.144469 8468 solver.cpp:310] Iteration 10200, loss = 0.0430824
I0428 18:33:49.144529 8468 solver.cpp:330] Iteration 10200, Testing net (#0)
I0428 18:33:49.144536 8468 net.cpp:676] Ignoring source layer train-data
I0428 18:33:49.547199 8497 data_layer.cpp:73] Restarting data prefetching from start.
I0428 18:33:53.852267 8468 solver.cpp:397] Test net output #0: accuracy = 0.470588
I0428 18:33:53.852303 8468 solver.cpp:397] Test net output #1: loss = 3.79919 (* 1 = 3.79919 loss)
I0428 18:33:53.852309 8468 solver.cpp:315] Optimization Done.
I0428 18:33:53.852313 8468 caffe.cpp:259] Optimization Done.