%% EEE3032 - Computer Vision and Pattern Recognition (ee3.cvpr) %% %% cvpr_visualsearch.m %% Skeleton code provided as part of the coursework assessment %% %% This code will load in all descriptors pre-computed (by the %% function cvpr_computedescriptors) from the images in the MSRCv2 dataset. %% %% It will pick a descriptor at random and compare all other descriptors to %% it - by calling cvpr_compare. In doing so it will rank the images by %% similarity to the randomly picked descriptor. Note that initially the %% function cvpr_compare returns a random number - you need to code it %% so that it returns the Euclidean distance or some other distance metric %% between the two descriptors it is passed. %% %% (c) John Collomosse 2010 (J.Collomosse@surrey.ac.uk) %% Centre for Vision Speech and Signal Processing (CVSSP) %% University of Surrey, United Kingdom close all; clear all; %% Edit the following line to the folder you unzipped the MSRCv2 dataset to DATASET_FOLDER = 'dataset'; %% Folder that holds the results... DESCRIPTOR_FOLDER = 'descriptors'; %% and within that folder, another folder to hold the descriptors %% we are interested in working with DESCRIPTOR_SUBFOLDER='globalRGBhisto'; %% 1) Load all the descriptors into "ALLFEAT" %% each row of ALLFEAT is a descriptor (is an image) ALLFEAT=[]; ALLFILES=cell(1,0); ALLCATs=[]; ctr=1; allfiles=dir (fullfile([DATASET_FOLDER,'/Images/*.bmp'])); for filenum=1:length(allfiles) fname=allfiles(filenum).name; %identify photo category for PR calculation split_string = split(fname, '_'); ALLCATs(filenum) = str2double(split_string(1)); imgfname_full=([DATASET_FOLDER,'/Images/',fname]); img=double(imread(imgfname_full))./255; thesefeat=[]; featfile=[DESCRIPTOR_FOLDER,'/',DESCRIPTOR_SUBFOLDER,'/',fname(1:end-4),'.mat'];%replace .bmp with .mat load(featfile,'F'); ALLFILES{ctr}=imgfname_full; ALLFEAT=[ALLFEAT ; F]; ctr=ctr+1; end % get counts for each category for PR calculation CAT_HIST = histogram(ALLCATs).Values; %% 2) Pick an image at random to be the query NIMG=size(ALLFEAT,1); % number of images in collection queryimg=floor(rand()*NIMG); % index of a random image %% 3) Compute the distance of image to the query dst=[]; for i=1:NIMG candidate=ALLFEAT(i,:); query=ALLFEAT(queryimg,:); category=ALLCATs(i); %% COMPARE FUNCTION thedst=compareEuclidean(query,candidate); dst=[dst ; [thedst i category]]; end dst=sortrows(dst,1); % sort the results %% 3.5) Calculate PR precision_values=zeros([1, NIMG]); recall_values=zeros([1, NIMG]); correct_at_n=zeros([1, NIMG]); query_row = dst(1,:); query_category = query_row(1,3); for i=1:NIMG rows = dst(1:i, :); correct_results = 0; incorrect_results = 0; if i > 1 for n=1:i - 1 row = rows(n, :); category = row(3); if category == query_category correct_results = correct_results + 1; else incorrect_results = incorrect_results + 1; end end end % LAST ROW row = rows(i, :); category = row(3); if category == query_category correct_results = correct_results + 1; correct_at_n(i) = 1; else incorrect_results = incorrect_results + 1; end precision = correct_results / i; recall = correct_results / CAT_HIST(1,query_category); precision_values(i) = precision; recall_values(i) = recall; end %% 3.6) calculate AP for i = 1:NIMG precision = precision_values(i); i end %% 3.8) plot PR curve % plot(recall_values, precision_values); % title('PR Curve'); % xlabel('Recall'); % ylabel('Precision'); %% 4) Visualise the results %% These may be a little hard to see using imgshow %% If you have access, try using imshow(outdisplay) or imagesc(outdisplay) SHOW=15; % Show top 15 results dst=dst(1:SHOW,:); outdisplay=[]; for i=1:size(dst,1) img=imread(ALLFILES{dst(i,2)}); img=img(1:2:end,1:2:end,:); % make image a quarter size img=img(1:81,:,:); % crop image to uniform size vertically (some MSVC images are different heights) outdisplay=[outdisplay img]; end imgshow(outdisplay); axis off;