*Given an observation, determine one class from a set of classes that best explains the observation* ***Features are discrete or continuous*** - 2 category classifier - Dichotomiser # Argmax Argument that gives the maximum value from a target function # Gaussian Classifier [Training](Supervised/Supervised.md) - Each class $i$ has it's own Gaussian $N_i=N(m_i,v_i)$ $$\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)$$ $$\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)$$ - With equal priors ![](../../img/gaussian-class.png) # Discrete Classifier - Each class $i$ has it's own histogram $H_i$ - Describes the probability of each observation type $k$ - $P(o_t=k|H_i)$, based on class-specific type counts $$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)$$ - Nothing else known about classes $$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)$$ - Given class priors $P(H_i)$ - Maximum posterior probability - Bayes ![](../../img/coordinate-change.png)