$$Y(s)=H(s)\cdot X(s)$$ - $H(s)=\frac{Y(s)}{X(s)}=\frac{\mathcal L\{y(t)\}}{\mathcal L\{x(t)\}}$ $$Y(z)=H(z)\cdot X(z)$$ - $H(z)=\frac{Y(z)}{X(z)}=\frac{\mathcal Z\{y[n]\}}{\mathcal Z\{x[n]\}}$ $$G(\omega)=\frac{|Y|}{|X|}=|H(j\omega)|$$ - $H(j\omega)$, Frequency response $$\phi(\omega)=arg(Y)-arg(X)=arg\left(H\left(j\omega\right)\right)$$ - $\phi(\omega)$, Phase shift $$\tau_\phi(\omega)=-\frac{\phi(\omega)}{\omega}$$ - $\tau_\phi$, Phase delay - Frequency-dependent amount of delay introduced to the sinusoid by $H$ $$\tau_g(\omega)=-\frac{d\phi(\omega)}{d\omega}$$ - $\tau_g$, Group delay - Frequency-dependent amount of delay introduced to the envelope of the sinusoid by $H$ [Partial Fractions](https://lpsa.swarthmore.edu/BackGround/PartialFraction/PartialFraction.html#Order_of_numerator_polynomial_is_not_less_than_that_of_the_denominator) [Partial Fractions for Laplace](https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXformPFE.html) [Inverse Z Transform](https://lpsa.swarthmore.edu/ZXform/InvZXform/InvZXform.html) [Discrete Time Systems:Impulse responses and convolution; An introduction to the Z-transform](https://homes.esat.kuleuven.be/~maapc/static/files/SYSTHEORY/Slides/Lecture5/Lecture5-Impulse%20responses%20and%20convolution%20layout.pdf)